Skip to main content

Advertisement

Log in

Outdoor cultivation of microalgae in a coal-fired power plant for conversion of flue gas CO2 into microalgal direct combustion fuels

  • Original Article
  • Published:
Systems Microbiology and Biomanufacturing Aims and scope Submit manuscript

Abstract

Microalgae have piqued renewed interest as a sustainable biofuel feedstock owing to their high CO2 conversion efficiency. However, the major limitation of microalga-based biofuel production is low productivity. In this study, CO2 in flue gas emitted from the coal-fired power plants was fixed through mass microalgal cultivation using only sunlight as an energy source. To minimize the cost and energy required to supply the flue gas and efficiently utilize the microalgal biomass, a polycarbonate (PC) greenhouse and polymeric photobioreactors were installed near the power plant stack. Four different microalgal strains (Chlamydomonas reinhardtii, Chlorella sorokiniana, Neochloris oleoabundans, and Neochloris oleoabundans #13) were subjected to semi-continuous culturing for 1 month. The maximum biomass productivity was achieved by the N. oleoabundans #13 strain (0.703 g L−1 day−1). Additionally, polymerase chain reaction analysis revealed that the individual microalgal culture was not cross-contaminated with other microalgal cultures in this cultivation system, owing to the structural properties of photobioreactor comprising individual modules. The lipid content and calorific productivity of N. oleoabundans #13 biomass were 45.70% and 3.553 kJ L−1 day−1, respectively, which indicate satisfactory performance of biomass as a direct combustion fuel. The CO2 fixation rate, which was calculated based on the carbon content in the biomass, was 0.309 g CO2 L−1 day−1. Therefore, large amounts of CO2 can be reduced using the large-scale microalgal cultivation system, which enables efficient biological CO2 conversion and maximizes microalgal biomass utilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and materials

All data generated or analyzed during this study are included in this published article.

References

  1. Hong ME, Yu BS, Patel AK, Choi HI, Song S, Sung YJ, et al. Enhanced biomass and lipid production of Neochloris oleoabundans under high light conditions by anisotropic nature of light-splitting CaCO3 crystal. Biores Technol. 2019;287:121483.

    Article  CAS  Google Scholar 

  2. Hong ME, Chang WS, Patel AK, Oh MS, Lee JJ, Sim SJ. Microalgal-based carbon sequestration by converting LNG-fired waste CO2 into red gold astaxanthin: the potential applicability. Energies. 2019;12(9):1718.

    Article  CAS  Google Scholar 

  3. Mohler D, Wilson MH, Kesner S, Schambach JY, Vaughan D, Frazar M, et al. Beneficial re-use of industrial CO2 emissions using microalgae: demonstration assessment and biomass characterization. Biores Technol. 2019;293:122014.

    Article  CAS  Google Scholar 

  4. Moreira D, Pires JC. Atmospheric CO2 capture by algae: negative carbon dioxide emission path. Biores Technol. 2016;215:371–9.

    Article  CAS  Google Scholar 

  5. Zeng X, Danquah MK, Chen XD, Lu Y. Microalgae bioengineering: from CO2 fixation to biofuel production. Renew Sustain Energy Rev. 2011;15(6):3252–60.

    Article  CAS  Google Scholar 

  6. Sung YJ, Kim JYH, Bong KW, Sim SJ. Microdroplet photobioreactor for the photoautotrophic culture of microalgal cells. Analyst. 2016;141(3):989–98.

    Article  CAS  PubMed  Google Scholar 

  7. Tenenbaum DJ. Food vs. fuel: diversion of crops could cause more hunger. Research Triangle: National Institute of Environmental Health Sciences; 2008.

    Google Scholar 

  8. Nguyen T-AD, Kim K-R, Kim MS, Sim SJ. Thermophilic hydrogen fermentation from Korean rice straw by Thermotoga neapolitana. Int J Hydrog Energy. 2010;35(24):13392–8.

    Article  CAS  Google Scholar 

  9. Sim SJ, Chang HN, Liu JR, Jung KH. Production and secretion of indole alkaloids in hairy root cultures of Catharanthus roseus: effects of in situ adsorption, fungal elicitation and permeabilization. J Ferment Bioeng. 1994;78(3):229–34.

    Article  CAS  Google Scholar 

  10. Choi YY, Patel AK, Hong ME, Chang WS, Sim SJ. Microalgae bioenergy with carbon capture and storage (BECCS): an emerging sustainable bioprocess for reduced CO2 emission and biofuel production. Bioresour Technol Rep. 2019;7:100270.

    Article  Google Scholar 

  11. Shin YS, Choi HI, Choi JW, Lee JS, Sung YJ, Sim SJ. Multilateral approach on enhancing economic viability of lipid production from microalgae: a review. Bioresour Technol. 2018;258:335–44.

    Article  CAS  PubMed  Google Scholar 

  12. Sung YJ, Kim JYH, Choi HI, Kwak HS, Sim SJ. Magnetophoretic sorting of microdroplets with different microalgal cell densities for rapid isolation of fast growing strains. Sci Rep. 2017;7(1):1–11.

    Article  CAS  Google Scholar 

  13. Kumar A, Ergas S, Yuan X, Sahu A, Zhang Q, Dewulf J, et al. Enhanced CO2 fixation and biofuel production via microalgae: recent developments and future directions. Trends Biotechnol. 2010;28(7):371–80.

    Article  CAS  PubMed  Google Scholar 

  14. Kwak HS, Kim JYH, Woo HM, Jin E, Min BK, Sim SJ. Synergistic effect of multiple stress conditions for improving microalgal lipid production. Algal Res. 2016;19:215–24.

    Article  Google Scholar 

  15. Kim JYH, Kwak HS, Sung YJ, Choi HI, Hong ME, Lim HS, et al. Microfluidic high-throughput selection of microalgal strains with superior photosynthetic productivity using competitive phototaxis. Sci Rep. 2016;6(1):1–11.

    Article  CAS  Google Scholar 

  16. Kwak HS, Kim JYH, Sim SJ. A microscale approach for simple and rapid monitoring of cell growth and lipid accumulation in Neochloris oleoabundans. Bioprocess Biosyst Eng. 2015;38(10):2035–43.

    Article  CAS  PubMed  Google Scholar 

  17. Choi HI, Lee JS, Choi JW, Shin YS, Sung YJ, Hong ME, et al. Performance and potential appraisal of various microalgae as direct combustion fuel. Bioresour Technol. 2019;273:341–9.

    Article  CAS  PubMed  Google Scholar 

  18. Mata TM, Martins AA, Caetano NS. Microalgae for biodiesel production and other applications: a review. Renew Sustain Energy Rev. 2010;14(1):217–32. https://doi.org/10.1016/j.rser.2009.07.020.

    Article  CAS  Google Scholar 

  19. Kroumov AD, Módenes AN, Trigueros DEG, Espinoza-Quiñones FR, Borba CE, Scheufele FB, et al. A systems approach for CO2 fixation from flue gas by microalgae—theory review. Process Biochem. 2016;51(11):1817–32. https://doi.org/10.1016/j.procbio.2016.05.019.

    Article  CAS  Google Scholar 

  20. Kadam KL. Power plant flue gas as a source of CO2 for microalgae cultivation: economic impact of different process options. Energy Convers Manag. 1997;38:S505–S510510.

    Article  CAS  Google Scholar 

  21. Zheng Q, Xu X, Martin GJO, Kentish SE. Critical review of strategies for CO2 delivery to large-scale microalgae cultures. Chin J Chem Eng. 2018;26(11):2219–28. https://doi.org/10.1016/j.cjche.2018.07.013.

    Article  CAS  Google Scholar 

  22. Somers MD, Quinn JC. Sustainability of carbon delivery to an algal biorefinery: a techno-economic and life-cycle assessment. J CO2 Util. 2019;30:193–204. https://doi.org/10.1016/j.jcou.2019.01.007.

    Article  CAS  Google Scholar 

  23. Gutiérrez-Arriaga CG, Serna-González M, Ponce-Ortega JM, El-Halwagi MM. Sustainable integration of algal biodiesel production with steam electric power plants for greenhouse gas mitigation. ACS Sustain Chem Eng. 2014;2(6):1388–403. https://doi.org/10.1021/sc400436a.

    Article  CAS  Google Scholar 

  24. Wang XW, Liang JR, Luo CS, Chen CP, Gao YH. Biomass, total lipid production, and fatty acid composition of the marine diatom Chaetoceros muelleri in response to different CO2 levels. Bioresour Technol. 2014;161:124–30. https://doi.org/10.1016/j.biortech.2014.03.012.

    Article  CAS  PubMed  Google Scholar 

  25. Choi HI, Hwang SW, Sim SJ. Comprehensive approach to improving life-cycle CO2 reduction efficiency of microalgal biorefineries: a review. Bioresour Technol. 2019;291:121879. https://doi.org/10.1016/j.biortech.2019.121879.

    Article  CAS  PubMed  Google Scholar 

  26. Choi YY, Hong ME, Jin ES, Woo HM, Sim SJ. Improvement in modular scalability of polymeric thin-film photobioreactor for autotrophic culturing of Haematococcus pluvialis using industrial flue gas. Bioresour Technol. 2018;249:519–26. https://doi.org/10.1016/j.biortech.2017.10.060.

    Article  CAS  PubMed  Google Scholar 

  27. Choi YY, Joun JM, Lee J, Hong ME, Pham H-M, Chang WS, et al. Development of large-scale and economic pH control system for outdoor cultivation of microalgae Haematococcus pluvialis using industrial flue gas. Bioresour Technol. 2017;244:1235–44.

    Article  CAS  PubMed  Google Scholar 

  28. Sung YJ, Patel AK, Yu BS, Choi HI, Kim J, Jin E, et al. Sedimentation rate-based screening of oleaginous microalgae for utilization as a direct combustion fuel. Bioresour Technol. 2019;293:122045.

    Article  CAS  PubMed  Google Scholar 

  29. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959;37(8):911–7.

    Article  CAS  PubMed  Google Scholar 

  30. Sung YJ, Choi HI, Lee JS, Hong ME, Sim SJ. Screening of oleaginous algal strains from Chlamydomonas reinhardtii mutant libraries via density gradient centrifugation. Biotechnol Bioeng. 2019;116(12):3179–88.

    Article  CAS  PubMed  Google Scholar 

  31. Giovanardi M, Ferroni L, Baldisserotto C, Tedeschi P, Maietti A, Pantaleoni L, et al. Morphophysiological analyses of Neochloris oleoabundans (Chlorophyta) grown mixotrophically in a carbon-rich waste product. Protoplasma. 2013;250(1):161–74.

    Article  PubMed  Google Scholar 

  32. Al-Thani R, Al-Najjar MAA, Al-Raei AM, Ferdelman T, Thang NM, Shaikh IA, et al. Community structure and activity of a highly dynamic and nutrient-limited hypersaline microbial mat in Um Alhool Sabkha, Qatar. PLoS ONE 2014;9(3):e92405

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Bellan A, Bucci F, Perin G, Alboresi A, Morosinotto T. Photosynthesis regulation in response to fluctuating light in the secondary endosymbiont alga Nannochloropsis gaditana. Plant Cell Physiol. 2020;61(1):41–52.

    Article  CAS  PubMed  Google Scholar 

  34. Yen HW, Ho SH, Chen CY, Chang JS. CO2, NOx and SOx removal from flue gas via microalgae cultivation: a critical review. Biotechnol J. 2015;10(6):829–39.

    Article  CAS  PubMed  Google Scholar 

  35. Yoon SY, Hong ME, Chang WS, Sim SJ. Enhanced biodiesel production in Neochloris oleoabundans by a semi-continuous process in two stage photobioreactors. Bioprocess Biosyst Eng. 2015;38(7):1415–21.

    Article  CAS  PubMed  Google Scholar 

  36. Knothe G. Improving biodiesel fuel properties by modifying fatty ester composition. Energy Environ Sci. 2009;2(7):759–66.

    Article  CAS  Google Scholar 

  37. Sharma AK, Sahoo PK, Singhal S, Patel A. Impact of various media and organic carbon sources on biofuel production potential from Chlorella spp. 3 Biotech. 2016;6(2):116.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Wang Z, Gong Z, Wang W, Zhang Z. Study on combustion characteristics and the migration of heavy metals during the co-combustion of oil sludge char and microalgae residue. Renew Energy. 2020;151:648–58.

    Article  CAS  Google Scholar 

  39. Sun J, Cheng J, Yang Z, Zhou J. Heavy metal control in microalgae cultivation with power plant flue gas entering into raceway pond. Environ Sci Pollut Res. 2020. https://doi.org/10.1007/s11356-020-08220-6.

    Article  Google Scholar 

  40. Illman A, Scragg A, Shales S. Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzyme Microb Technol. 2000;27(8):631–5.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Jong-Kyun You and Dr. Dae Ho Lim at Korea Institute of Energy Research for providing the property data of the flue gas and assisting with the continuous supply of the flue gas.

Funding

This work was supported by the Korea CCS R&D Center (Korea CCS 2020 Project) of the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT of Korea [Grant number 2014M1A8A1049278] and the Korea Institute of Energy Technology Evaluation and Planning (KETEP) Grant funded by the Korean government (Ministry of Trade, Industry and Energy) [Grant number 20172010202050].

Author information

Authors and Affiliations

Authors

Contributions

YJS and JSL prepared and revised the manuscript. YJS and JSL analyzed the data. YJS, JSL, HKY, and HK designed and performed the experiments. SJS supervised the study.

Corresponding author

Correspondence to Sang Jun Sim.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

All authors agree to the publication of this manuscript.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 123 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sung, Y.J., Lee, J.S., Yoon, H.K. et al. Outdoor cultivation of microalgae in a coal-fired power plant for conversion of flue gas CO2 into microalgal direct combustion fuels. Syst Microbiol and Biomanuf 1, 90–99 (2021). https://doi.org/10.1007/s43393-020-00007-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43393-020-00007-7

Keywords

Navigation