Skip to main content

Advertisement

Log in

State of the art advances in minimally invasive surgery for adult spinal deformity

  • State of the Art Review
  • Published:
Spine Deformity Aims and scope Submit manuscript

Abstract

Adult spinal deformity (ASD) can be associated with substantial suffering due to pain and disability. Surgical intervention for achieving neural decompression and restoring physiological spinal alignment has shown to result in significant improvement in pain and disability through patient-reported outcomes. Traditional open approaches involving posterior osteotomy techniques and instrumentation are effective based on clinical outcomes but associated with high complication rates, even in the hands of the most experienced surgeons. Minimally invasive techniques may offer benefit while decreasing associated morbidity. Minimally invasive surgery (MIS) for ASD has evolved over the past 20 years, driven by improved understanding of open procedures along with novel technique development and technologic advancements. Early efforts were hindered due to suboptimal outcomes resulting from high pseudarthrosis, inadequate correction, and fixation failure rates. To address this, multi-center collaborative groups have been established to study large numbers of ASD patients which have been vital to understanding optimal patient selection and individualized management strategies. Different MIS decision-making algorithms have been described to better define appropriate candidates and interbody selection approaches in ASD. The purpose of this state of the review is to describe the evolution of MIS surgery for adult deformity with emphasis on landmark papers, and to discuss specific MIS technology for ASD, including percutaneous pedicle screw instrumentation, hyperlordotic grafts, three-dimensional navigation, and robotics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Smith JS, Line B, Bess S, Shaffrey CI, Kim HJ, Mundis G, Scheer JK, Klineberg E, O'Brien M, Hostin R, Gupta M, Daniels A, Kelly M, Gum JL, Schwab FJ, Lafage V, Lafage R, Ailon T, Passias P, Protopsaltis T, Albert TJ, Riew KD, Hart R, Burton D, Deviren V, Ames CP, Group ISS (2017) The health impact of adult cervical deformity in patients presenting for surgical treatment: comparison to united states population norms and chronic disease states based on the euroquol-5 dimensions questionnaire. Neurosurgery 80(5):716–725. https://doi.org/10.1093/neuros/nyx028

    Article  PubMed  Google Scholar 

  2. Bess S, Line B, Fu KM, McCarthy I, Lafage V, Schwab F, Shaffrey C, Ames C, Akbarnia B, Jo H, Kelly M, Burton D, Hart R, Klineberg E, Kebaish K, Hostin R, Mundis G, Mummaneni P, Smith JS, International Spine Study G (2016) The health impact of symptomatic adult spinal deformity: comparison of deformity types to United States population norms and chronic diseases. Spine (Phila Pa 1976) 41(3):224–233. https://doi.org/10.1097/BRS.0000000000001202

    Article  Google Scholar 

  3. Ames CP, Scheer JK, Lafage V, Smith JS, Bess S, Berven SH, Mundis GM, Sethi RK, Deinlein DA, Coe JD, Hey LA, Daubs MD (2016) Adult spinal deformity: epidemiology, health impact, evaluation, and management. Spine Deform 4(4):310–322. https://doi.org/10.1016/j.jspd.2015.12.009

    Article  PubMed  Google Scholar 

  4. Verma R, Lafage R, Scheer J, Smith J, Passias P, Hostin R, Ames C, Mundis G, Burton D, Kim HJ, Bess S, Klineberg E, Schwab F, Lafage V, International Spine Study G (2019) Improvement in back and leg pain and disability following adult spinal deformity surgery: study of 324 patients with 2-year follow-up and the impact of surgery on patient-reported outcomes. Spine (Phila Pa 1976) 44(4):263–269. https://doi.org/10.1097/BRS.0000000000002815

    Article  Google Scholar 

  5. Daniels AH, Smith JS, Hiratzka J, Ames CP, Bess S, Shaffrey CI, Schwab FJ, Lafage V, Klineberg EO, Burton D, Mundis GM, Line B, Hart RA, International Spine Study G (2015) Functional limitations due to lumbar stiffness in adults with and without spinal deformity. Spine (Phila Pa 1976) 40(20):1599–1604. https://doi.org/10.1097/BRS.0000000000001090

    Article  Google Scholar 

  6. Ferrero E, Skalli W, Lafage V, Maillot C, Carlier R, Feydy A, Felter A, Khalife M, Guigui P (2020) Relationships between radiographic parameters and spinopelvic muscles in adult spinal deformity patients. Eur Spine J 29(6):1328–1339. https://doi.org/10.1007/s00586-019-06243-3

    Article  PubMed  Google Scholar 

  7. Elsayed W, Farrag A, Muaidi Q, Almulhim N (2018) Relationship between sagittal spinal curves geometry and isokinetic trunk muscle strength in adults. Eur Spine J 27(8):2014–2022. https://doi.org/10.1007/s00586-017-5454-3

    Article  PubMed  Google Scholar 

  8. Granacher U, Lacroix A, Muehlbauer T, Roettger K, Gollhofer A (2013) Effects of core instability strength training on trunk muscle strength, spinal mobility, dynamic balance and functional mobility in older adults. Gerontology 59(2):105–113. https://doi.org/10.1159/000343152

    Article  PubMed  Google Scholar 

  9. Glassman SD, Berven S, Bridwell K, Horton W, Dimar JR (2005) Correlation of radiographic parameters and clinical symptoms in adult scoliosis. Spine (Phila Pa 1976) 30(6):682–688. https://doi.org/10.1097/01.brs.0000155425.04536.f7

    Article  Google Scholar 

  10. Fu KM, Bess S, Shaffrey CI, Smith JS, Lafage V, Schwab F, Burton DC, Akbarnia BA, Ames CP, Boachie-Adjei O, Deverin V, Hart RA, Hostin R, Klineberg E, Gupta M, Kebaish K, Mundis G, Mummaneni PV (2014) Patients with adult spinal deformity treated operatively report greater baseline pain and disability than patients treated nonoperatively; however, deformities differ between age groups. Spine (Phila Pa 1976) 39(17):1401–1407. https://doi.org/10.1097/BRS.0000000000000414

    Article  Google Scholar 

  11. Schwab FJ, Blondel B, Bess S, Hostin R, Shaffrey CI, Smith JS, Boachie-Adjei O, Burton DC, Akbarnia BA, Mundis GM, Ames CP, Kebaish K, Hart RA, Farcy JP, Lafage V, International Spine Study G (2013) Radiographical spinopelvic parameters and disability in the setting of adult spinal deformity: a prospective multicenter analysis. Spine (Phila Pa 1976) 38(13):E803–812. https://doi.org/10.1097/BRS.0b013e318292b7b9

    Article  Google Scholar 

  12. Schwab F, Farcy JP, Bridwell K, Berven S, Glassman S, Harrast J, Horton W (2006) A clinical impact classification of scoliosis in the adult. Spine (Phila Pa 1976) 31(18):2109–2114. https://doi.org/10.1097/01.brs.0000231725.38943.ab

    Article  Google Scholar 

  13. Yoshida G, Boissiere L, Larrieu D, Bourghli A, Vital JM, Gille O, Pointillart V, Challier V, Mariey R, Pellise F, Vila-Casademunt A, Perez-Grueso FJ, Alanay A, Acaroglu E, Kleinstuck F, Obeid I, Essg ESSG (2017) Advantages and disadvantages of adult spinal deformity surgery and its impact on health-related quality of life. Spine (Phila Pa 1976) 42(6):411–419. https://doi.org/10.1097/BRS.0000000000001770

    Article  Google Scholar 

  14. Scheer JK, Hostin R, Robinson C, Schwab F, Lafage V, Burton DC, Hart RA, Kelly MP, Keefe M, Polly D, Bess S, Shaffrey CI, Smith JS, Ames CP, International Spine Study G (2018) Operative management of adult spinal deformity results in significant increases in QALYs gained compared to nonoperative management: analysis of 479 patients with minimum 2-year follow-up. Spine (Phila Pa 1976) 43(5):339–347. https://doi.org/10.1097/BRS.0000000000001626

    Article  Google Scholar 

  15. Smith JS, Lafage V, Shaffrey CI, Schwab F, Lafage R, Hostin R, O'Brien M, Boachie-Adjei O, Akbarnia BA, Mundis GM, Errico T, Kim HJ, Protopsaltis TS, Hamilton DK, Scheer JK, Sciubba D, Ailon T, Fu KM, Kelly MP, Zebala L, Line B, Klineberg E, Gupta M, Deviren V, Hart R, Burton D, Bess S, Ames CP, International Spine Study G (2016) Outcomes of operative and nonoperative treatment for adult spinal deformity: a prospective, multicenter, propensity-matched cohort assessment with minimum 2-year follow-up. Neurosurgery 78 (6):851-861. doi:10.1227/NEU.0000000000001116

  16. Bridwell KH, Baldus C, Berven S, Edwards C 2nd, Glassman S, Hamill C, Horton W, Lenke LG, Ondra S, Schwab F, Shaffrey C, Wootten D (2010) Changes in radiographic and clinical outcomes with primary treatment adult spinal deformity surgeries from 2 years to 3- to 5-years follow-up. Spine (Phila Pa 1976) 35(20):1849–1854. https://doi.org/10.1097/BRS.0b013e3181efa06a

    Article  Google Scholar 

  17. Fischer CR, Terran J, Lonner B, McHugh B, Warren D, Glassman S, Bridwell K, Schwab F, Lafage V (2014) Factors predicting cost-effectiveness of adult spinal deformity surgery at 2 years. Spine Deform 2(5):415–422. https://doi.org/10.1016/j.jspd.2014.04.011

    Article  PubMed  Google Scholar 

  18. Schwab F, Lafage V, Farcy JP, Bridwell K, Glassman S, Ondra S, Lowe T, Shainline M (2007) Surgical rates and operative outcome analysis in thoracolumbar and lumbar major adult scoliosis: application of the new adult deformity classification. Spine (Phila Pa 1976) 32(24):2723–2730. https://doi.org/10.1097/BRS.0b013e31815a58f2

    Article  Google Scholar 

  19. Terran J, McHugh BJ, Fischer CR, Lonner B, Warren D, Glassman S, Bridwell K, Schwab F, Lafage V (2014) Surgical treatment for adult spinal deformity: projected cost effectiveness at 5-year follow-up. Ochsner J 14(1):14–22

    PubMed  PubMed Central  Google Scholar 

  20. Smith JS, Shaffrey CI, Klineberg E, Lafage V, Schwab F, Lafage R, Kim HJ, Hostin R, Mundis GM Jr, Gupta M, Liabaud B, Scheer JK, Diebo BG, Protopsaltis TS, Kelly MP, Deviren V, Hart R, Burton D, Bess S, Ames CP, Group obotISS (2017) Complication rates associated with 3-column osteotomy in 82 adult spinal deformity patients: retrospective review of a prospectively collected multicenter consecutive series with 2-year follow-up. J Neurosurg Spine 27(4):444–457. https://doi.org/10.3171/2016.10.SPINE16849

    Article  PubMed  Google Scholar 

  21. Glassman SD, Hamill CL, Bridwell KH, Schwab FJ, Dimar JR, Lowe TG (2007) The impact of perioperative complications on clinical outcome in adult deformity surgery. Spine (Phila Pa 1976) 32(24):2764–2770. https://doi.org/10.1097/BRS.0b013e31815a7644

    Article  Google Scholar 

  22. Glassman SD, Dimar JR 2nd, Carreon LY (2015) Revision rate after adult deformity surgery. Spine Deform 3(2):199–203. https://doi.org/10.1016/j.jspd.2014.08.005

    Article  PubMed  Google Scholar 

  23. De la Garza RR, Nakhla J, Echt M, Gelfand Y, Scoco AN, Kinon MD, Yassari R (2018) Risk factors for 30-day readmissions and reoperations after 3-column osteotomy for spinal deformity. Global Spine J 8(5):483–489. https://doi.org/10.1177/2192568217739886

    Article  Google Scholar 

  24. Patel AA, Zfass-Mendez M, Lebwohl NH, Wang MY, Green BA, Levi AD, Vanni S, Williams SK (2015) Minimally invasive versus open lumbar fusion: a comparison of blood loss, surgical complications, and hospital course. Iowa Orthop J 35:130–134

    PubMed  PubMed Central  Google Scholar 

  25. Lee LY, Idris Z, Beng TB, Young TY, Chek WC, Abdullah JM, Hieng WS (2017) Outcomes of minimally invasive surgery compared to open posterior lumbar instrumentation and fusion. Asian J Neurosurg 12(4):620–637. https://doi.org/10.4103/ajns.AJNS_331_16

    Article  PubMed  PubMed Central  Google Scholar 

  26. McGirt MJ, Parker SL, Mummaneni P, Knightly J, Pfortmiller D, Foley K, Asher AL (2017) Is the use of minimally invasive fusion technologies associated with improved outcomes after elective interbody lumbar fusion? Analysis of a nationwide prospective patient-reported outcomes registry. Spine J 17(7):922–932. https://doi.org/10.1016/j.spinee.2017.02.003

    Article  PubMed  Google Scholar 

  27. Vora D, Kinnard M, Falk D, Hoy M, Gupta S, Piper C, Yu W, Siddiqui F, O'Brien J (2018) A comparison of narcotic usage and length of post-operative hospital stay in open versus minimally invasive lumbar interbody fusion with percutaneous pedicle screws. J Spine Surg 4(3):516–521. https://doi.org/10.21037/jss.2018.08.04

    Article  PubMed  PubMed Central  Google Scholar 

  28. Lu VM, Kerezoudis P, Gilder HE, McCutcheon BA, Phan K, Bydon M (2017) Minimally invasive surgery versus open surgery spinal fusion for spondylolisthesis: a systematic review and meta-analysis. Spine (Phila Pa 1976) 42(3):E177–E185. https://doi.org/10.1097/BRS.0000000000001731

    Article  Google Scholar 

  29. Phan K, Rao PJ, Kam AC, Mobbs RJ (2015) Minimally invasive versus open transforaminal lumbar interbody fusion for treatment of degenerative lumbar disease: systematic review and meta-analysis. Eur Spine J 24(5):1017–1030. https://doi.org/10.1007/s00586-015-3903-4

    Article  PubMed  Google Scholar 

  30. Khan NR, Clark AJ, Lee SL, Venable GT, Rossi NB, Foley KT (2015) Surgical outcomes for minimally invasive vs open transforaminal lumbar interbody fusion: an updated systematic review and meta-analysis. Neurosurgery 77(6):847–874. https://doi.org/10.1227/NEU.0000000000000913

    Article  PubMed  Google Scholar 

  31. Uribe JS, Beckman J, Mummaneni PV, Okonkwo D, Nunley P, Wang MY, Mundis GM Jr, Park P, Eastlack R, Anand N, Kanter A, Lamarca F, Fessler R, Shaffrey CI, Lafage V, Chou D, Deviren V, Group M-I (2017) Does MIS surgery allow for shorter constructs in the surgical treatment of adult spinal deformity? Neurosurgery 80(3):489–497. https://doi.org/10.1093/neuros/nyw072

    Article  PubMed  Google Scholar 

  32. Eastlack RK, Srinivas R, Mundis GM, Nguyen S, Mummaneni PV, Okonkwo DO, Kanter AS, Anand N, Park P, Nunley P, Uribe JS, Akbarnia BA, Chou D, Deviren V, International Spine Study G (2019) Early and late reoperation rates with various mis techniques for adult spinal deformity correction. Global Spine J 9(1):41–47. https://doi.org/10.1177/2192568218761032

    Article  PubMed  Google Scholar 

  33. Hamilton DK, Kanter AS, Bolinger BD, Mundis GM Jr, Nguyen S, Mummaneni PV, Anand N, Fessler RG, Passias PG, Park P, La Marca F, Uribe JS, Wang MY, Akbarnia BA, Shaffrey CI, Okonkwo DO, International Spine Study G (2016) Reoperation rates in minimally invasive, hybrid and open surgical treatment for adult spinal deformity with minimum 2-year follow-up. Eur Spine J 25(8):2605–2611. https://doi.org/10.1007/s00586-016-4443-2

    Article  PubMed  Google Scholar 

  34. Yilgor C, Sogunmez N, Boissiere L, Yavuz Y, Obeid I, Kleinstuck F, Perez-Grueso FJS, Acaroglu E, Haddad S, Mannion AF, Pellise F, Alanay A, European Spine Study G (2017) Global alignment and proportion (GAP) score: development and validation of a new method of analyzing spinopelvic alignment to predict mechanical complications after adult spinal deformity surgery. J Bone Joint Surg Am 99(19):1661–1672. https://doi.org/10.2106/JBJS.16.01594

    Article  PubMed  Google Scholar 

  35. Noh SH, Ha Y, Obeid I, Park JY, Kuh SU, Chin DK, Kim KS, Cho YE, Lee HS, Kim KH (2020) Modified global alignment and proportion scoring with body mass index and bone mineral density (GAPB) for improving predictions of mechanical complications after adult spinal deformity surgery. Spine J 20(5):776–784. https://doi.org/10.1016/j.spinee.2019.11.006

    Article  PubMed  Google Scholar 

  36. Jacobs E, van Royen BJ, van Kuijk SMJ, Merk JMR, Stadhouder A, van Rhijn LW, Willems PC (2019) Prediction of mechanical complications in adult spinal deformity surgery-the GAP score versus the Schwab classification. Spine J 19(5):781–788. https://doi.org/10.1016/j.spinee.2018.11.013

    Article  PubMed  Google Scholar 

  37. Bari TJ, Ohrt-Nissen S, Hansen LV, Dahl B, Gehrchen M (2019) Ability of the global alignment and proportion score to predict mechanical failure following adult spinal deformity surgery-validation in 149 patients with two-year follow-up. Spine Deform 7(2):331–337. https://doi.org/10.1016/j.jspd.2018.08.002

    Article  PubMed  Google Scholar 

  38. Kawabata A, Yoshii T, Sakai K, Hirai T, Yuasa M, Inose H, Utagawa K, Hashimoto J, Matsukura Y, Tomori M, Torigoe I, Kusano K, Otani K, Mizuno K, Satoshi S, Kazuyuki F, Tomizawa S, Arai Y, Shindo S, Okawa A (2020) Identification of Predictive Factors for Mechanical Complications After Adult Spinal Deformity Surgery: A Multi-Institutional Retrospective Study. Spine (Phila Pa 1976). https://doi.org/10.1097/BRS.0000000000003500

    Article  Google Scholar 

  39. Ohba T, Ebata S, Oba H, Koyama K, Yokomichi H, Haro H (2019) Predictors of poor global alignment and proportion score after surgery for adult spinal deformity. Spine 44(19):E1136–E1143. https://doi.org/10.1097/BRS.0000000000003086

    Article  PubMed  Google Scholar 

  40. Wegner AM, Iyer S, Lenke LG, Kim HJ, Kelly MP (2020) Global alignment and proportion (GAP) scores in an asymptomatic, nonoperative cohort: a divergence of age-adjusted and pelvic incidence-based alignment targets. Eur Spine J. https://doi.org/10.1007/s00586-020-06474-9

    Article  PubMed  Google Scholar 

  41. Mundis GM Jr, Turner JD, Deverin V, Uribe JS, Nunley P, Mummaneni P, Anand N, Park P, Okonkwo DO, Wang MY, Bess S, Kanter AS, Fessler R, Nguyen S, Akbarnia BA, International Spine Study G (2017) A critical analysis of sagittal plane deformity correction with minimally invasive adult spinal deformity surgery: a 2-year follow-up study. Spine Deform 5(4):265–271. https://doi.org/10.1016/j.jspd.2017.01.010

    Article  PubMed  Google Scholar 

  42. Wang MY, Mummaneni PV, Fu KM, Anand N, Okonkwo DO, Kanter AS, La Marca F, Fessler R, Uribe J, Shaffrey CI, Lafage V, Haque RM, Deviren V, Mundis GM Jr, Minimally Invasive Surgery Section of the International Spine Study G (2014) Less invasive surgery for treating adult spinal deformities: ceiling effects for deformity correction with 3 different techniques. Neurosurg Focus 36(5):E12. https://doi.org/10.3171/2014.3.FOCUS1423

    Article  PubMed  Google Scholar 

  43. Eastlack RK, Mundis GM Jr, Wang M, Mummaneni PV, Uribe J, Okonkwo D, Akbarnia BA, Anand N, Kanter A, Park P, Lafage V, Shaffrey C, Fessler R, Deviren V, International Spine Study G (2017) Is there a patient profile that characterizes a patient with adult spinal deformity as a candidate for minimally invasive surgery? Global Spine J 7(7):703–708. https://doi.org/10.1177/2192568217716151

    Article  PubMed  PubMed Central  Google Scholar 

  44. Mummaneni PV, Shaffrey CI, Lenke LG, Park P, Wang MY, La Marca F, Smith JS, Mundis GM Jr, Okonkwo DO, Moal B, Fessler RG, Anand N, Uribe JS, Kanter AS, Akbarnia B, Fu KM, Minimally Invasive Surgery Section of the International Spine Study G (2014) The minimally invasive spinal deformity surgery algorithm: a reproducible rational framework for decision making in minimally invasive spinal deformity surgery. Neurosurg Focus 36(5):E6. https://doi.org/10.3171/2014.3.FOCUS1413

    Article  PubMed  Google Scholar 

  45. Akbarnia BA, Mundis GM Jr, Moazzaz P, Kabirian N, Bagheri R, Eastlack RK, Pawelek JB (2014) Anterior column realignment (ACR) for focal kyphotic spinal deformity using a lateral transpsoas approach and ALL release. J Spinal Disord Tech 27(1):29–39. https://doi.org/10.1097/BSD.0b013e318287bdc1

    Article  PubMed  Google Scholar 

  46. Turner JD, Akbarnia BA, Eastlack RK, Bagheri R, Nguyen S, Pimenta L, Marco R, Deviren V, Uribe J, Mundis GM Jr (2015) Radiographic outcomes of anterior column realignment for adult sagittal plane deformity: a multicenter analysis. Eur Spine J 24(Suppl 3):427–432. https://doi.org/10.1007/s00586-015-3842-0

    Article  PubMed  Google Scholar 

  47. Wang MY, Bordon G (2016) Mini-open pedicle subtraction osteotomy as a treatment for severe adult spinal deformities: case series with initial clinical and radiographic outcomes. J Neurosurg Spine 24(5):769–776. https://doi.org/10.3171/2015.7.SPINE15188

    Article  PubMed  Google Scholar 

  48. Wang MY, Madhavan K (2014) Mini-open pedicle subtraction osteotomy: surgical technique. World Neurosurg 81(5–6):843 e811–844. Doi: 10.1016/j.wneu.2012.10.002

  49. Chou D, Lau D (2016) The mini-open pedicle subtraction osteotomy for flat-back syndrome and kyphosis correction: operative technique. Oper Neurosurg (Hagerstown) 12(4):309–316. https://doi.org/10.1227/NEU.0000000000001167

    Article  Google Scholar 

  50. Mummaneni PV, Park P, Shaffrey CI, Wang MY, Uribe JS, Fessler RG, Chou D, Kanter AS, Okonkwo DO, Mundis GM, Eastlack RK, Nunley PD, Anand N, Virk MS, Lenke LG, Than KD, Robinson LC, Fu KM, International Spine Study G (2019) The MISDEF2 algorithm: an updated algorithm for patient selection in minimally invasive deformity surgery. J Neurosurg Spine:1–8. Doi: 10.3171/2019.7.SPINE181104

  51. Briggs H, Keats S (1947) Laminectomy and foraminotomy with chip fusion; operative treatment for the relief of low-back pain and sciatic pain associated with spondylolisthesis. J Bone Joint Surg Am 29(2):328–334

    CAS  PubMed  Google Scholar 

  52. Cloward RB (1953) The treatment of ruptured lumbar intervertebral discs by vertebral body fusion. I. Indications, operative technique, after care. J Neurosurg 10(2):154–168. https://doi.org/10.3171/jns.1953.10.2.0154

    Article  CAS  PubMed  Google Scholar 

  53. Harms J, Rolinger H (1982) A one-stager procedure in operative treatment of spondylolistheses: dorsal traction-reposition and anterior fusion (author's transl). Z Orthop Ihre Grenzgeb 120(3):343–347. https://doi.org/10.1055/s-2008-1051624

    Article  CAS  PubMed  Google Scholar 

  54. Schwender JD, Holly LT, Rouben DP, Foley KT (2005) Minimally invasive transforaminal lumbar interbody fusion (TLIF): technical feasibility and initial results. J Spinal Disord Tech 18(Suppl):S1–6. https://doi.org/10.1097/01.bsd.0000132291.50455.d0

    Article  PubMed  Google Scholar 

  55. Khoo LT, Palmer S, Laich DT, Fessler RG (2002) Minimally invasive percutaneous posterior lumbar interbody fusion. Neurosurgery 51(5 Suppl):S166–181

    PubMed  Google Scholar 

  56. Mobbs RJ, Phan K, Malham G, Seex K, Rao PJ (2015) Lumbar interbody fusion: techniques, indications and comparison of interbody fusion options including PLIF, TLIF, MI-TLIF, OLIF/ATP. LLIF and ALIF J Spine Surg 1(1):2–18. https://doi.org/10.3978/j.issn.2414-469X.2015.10.05

    Article  PubMed  Google Scholar 

  57. Kolcun JPG, Brusko GD, Wang MY (2019) Endoscopic transforaminal lumbar interbody fusion without general anesthesia: technical innovations and outcomes. Ann Transl Med 7(Suppl 5):S167. https://doi.org/10.21037/atm.2019.07.92

    Article  PubMed  PubMed Central  Google Scholar 

  58. Bassani R, Gregori F, Peretti G (2019) Evolution of the Anterior Approach in Lumbar Spine Fusion. World Neurosurg 131:391–398. https://doi.org/10.1016/j.wneu.2019.07.023

    Article  PubMed  Google Scholar 

  59. Fraser RD (1982) A wide muscle-splitting approach to the lumbosacral spine. J Bone Joint Surg Br 64(1):44–46

    Article  CAS  Google Scholar 

  60. Obenchain TG (1991) Laparoscopic lumbar discectomy: case report. J Laparoendosc Surg 1(3):145–149. https://doi.org/10.1089/lps.1991.1.145

    Article  CAS  PubMed  Google Scholar 

  61. Mayer HM (1997) A new microsurgical technique for minimally invasive anterior lumbar interbody fusion. Spine (Phila Pa 1976) 22(6):691–699. https://doi.org/10.1097/00007632-199703150-00023 (discussion 700)

    Article  CAS  Google Scholar 

  62. McAfee PC, Regan JJ, Geis WP, Fedder IL (1998) Minimally invasive anterior retroperitoneal approach to the lumbar spine. Emphasis on the lateral BAK. Spine (Phila Pa 1976) 23(13):1476–1484. https://doi.org/10.1097/00007632-199807010-00009

    Article  CAS  Google Scholar 

  63. Ozgur BM, Aryan HE, Pimenta L, Taylor WR (2006) Extreme Lateral Interbody Fusion (XLIF): a novel surgical technique for anterior lumbar interbody fusion. Spine J 6(4):435–443. https://doi.org/10.1016/j.spinee.2005.08.012

    Article  PubMed  Google Scholar 

  64. Wang MY, Tran S, Brusko GD, Eastlack R, Park P, Nunley PD, Kanter AS, Uribe JS, Anand N, Okonkwo DO, Than KD, Shaffrey CI, Lafage V, Mundis GM, Mummaneni PV, Group M-I (2019) Less invasive spinal deformity surgery: the impact of the learning curve at tertiary spine care centers. J Neurosurg Spine:1–8. Doi: 10.3171/2019.6.SPINE19531

  65. Formica M, Zanirato A, Cavagnaro L, Basso M, Divano S, Felli L, Formica C (2017) Extreme lateral interbody fusion in spinal revision surgery: clinical results and complications. Eur Spine J 26(Suppl 4):464–470. https://doi.org/10.1007/s00586-017-5115-6

    Article  PubMed  Google Scholar 

  66. Louie PK, Varthi AG, Narain AS, Lei V, Bohl DD, Shifflett GD, Phillips FM (2018) Stand-alone lateral lumbar interbody fusion for the treatment of symptomatic adjacent segment degeneration following previous lumbar fusion. Spine J 18(11):2025–2032. https://doi.org/10.1016/j.spinee.2018.04.008

    Article  PubMed  Google Scholar 

  67. Silvestre C, Mac-Thiong JM, Hilmi R, Roussouly P (2012) Complications and morbidities of mini-open anterior retroperitoneal lumbar interbody fusion: oblique lumbar interbody fusion in 179 patients. Asian Spine J 6(2):89–97. https://doi.org/10.4184/asj.2012.6.2.89

    Article  PubMed  PubMed Central  Google Scholar 

  68. Deukmedjian AR, Le TV, Baaj AA, Dakwar E, Smith DA, Uribe JS (2012) Anterior longitudinal ligament release using the minimally invasive lateral retroperitoneal transpsoas approach: a cadaveric feasibility study and report of 4 clinical cases. J Neurosurg Spine 17(6):530–539. https://doi.org/10.3171/2012.8.SPINE12432

    Article  PubMed  Google Scholar 

  69. Trambert JJ (1999) Percutaneous interventions in the presacral space: CT-guided precoccygeal approach–early experience. Radiology 213(3):901–904. https://doi.org/10.1148/radiology.213.3.r99dc15901

    Article  CAS  PubMed  Google Scholar 

  70. Marotta N, Cosar M, Pimenta L, Khoo LT (2006) A novel minimally invasive presacral approach and instrumentation technique for anterior L5–S1 intervertebral discectomy and fusion: technical description and case presentations. Neurosurg Focus 20(1):E9. https://doi.org/10.3171/foc.2006.20.1.10

    Article  PubMed  Google Scholar 

  71. Cragg A, Carl A, Casteneda F, Dickman C, Guterman L, Oliveira C (2004) New percutaneous access method for minimally invasive anterior lumbosacral surgery. J Spinal Disord Tech 17(1):21–28. https://doi.org/10.1097/00024720-200402000-00006

    Article  PubMed  Google Scholar 

  72. Ledet EH, Tymeson MP, Salerno S, Carl AL, Cragg A (2005) Biomechanical evaluation of a novel lumbosacral axial fixation device. J Biomech Eng 127(6):929–933. https://doi.org/10.1115/1.2049334

    Article  PubMed  Google Scholar 

  73. Li X, Zhang Y, Hou Z, Wu T, Ding Z (2012) The relevant anatomy of the approach for axial lumbar interbody fusion. Spine (Phila Pa 1976) 37(4):266–271. https://doi.org/10.1097/BRS.0b013e31821b8f6d

    Article  CAS  Google Scholar 

  74. Anand N, Baron EM, Khandehroo B (2014) Does minimally invasive transsacral fixation provide anterior column support in adult scoliosis? Clin Orthop Relat Res 472(6):1769–1775. https://doi.org/10.1007/s11999-013-3335-6

    Article  PubMed  Google Scholar 

  75. Anand N, Alayan A, Cohen J, Cohen R, Khandehroo B (2018) Clinical and radiologic fate of the lumbosacral junction after anterior lumbar interbody fusion versus axial lumbar interbody fusion at the bottom of a long construct in CMIS treatment of adult spinal deformity. J Am Acad Orthop Surg Glob Res Rev 2(10):e067. https://doi.org/10.5435/JAAOSGlobal-D-18-00067

    Article  PubMed  PubMed Central  Google Scholar 

  76. Uribe JS, Schwab F, Mundis GM, Xu DS, Januszewski J, Kanter AS, Okonkwo DO, Hu SS, Vedat D, Eastlack R, Berjano P, Mummaneni PV (2018) The comprehensive anatomical spinal osteotomy and anterior column realignment classification. J Neurosurg Spine 29(5):565–575. https://doi.org/10.3171/2018.4.SPINE171206

    Article  PubMed  Google Scholar 

  77. Leveque JC, Yanamadala V, Buchlak QD, Sethi RK (2017) Correction of severe spinopelvic mismatch: decreased blood loss with lateral hyperlordotic interbody grafts as compared with pedicle subtraction osteotomy. Neurosurg Focus 43(2):E15. https://doi.org/10.3171/2017.5.FOCUS17195

    Article  PubMed  Google Scholar 

  78. Xu DS, Paluzzi J, Kanter AS, Uribe JS (2018) Anterior Column Release/Realignment. Neurosurg Clin N Am 29(3):427–437. https://doi.org/10.1016/j.nec.2018.03.008

    Article  PubMed  Google Scholar 

  79. Mundis GM Jr, Turner JD, Kabirian N, Pawelek J, Eastlack RK, Uribe J, Klineberg E, Bess S, Ames C, Deviren V, Nguyen S, Lafage V, Akbarnia BA, International Spine Study G (2017) Anterior column realignment has similar results to pedicle subtraction osteotomy in treating adults with sagittal plane deformity. World Neurosurg 105:249–256. https://doi.org/10.1016/j.wneu.2017.05.122

    Article  PubMed  Google Scholar 

  80. Berjano P, Cecchinato R, Sinigaglia A, Damilano M, Ismael MF, Martini C, Villafane JH, Lamartina C (2015) Anterior column realignment from a lateral approach for the treatment of severe sagittal imbalance: a retrospective radiographic study. Eur Spine J 24(Suppl 3):433–438. https://doi.org/10.1007/s00586-015-3930-1

    Article  PubMed  Google Scholar 

  81. Uribe JS, Deukmedjian AR (2015) Visceral, vascular, and wound complications following over 13,000 lateral interbody fusions: a survey study and literature review. Eur Spine J 24(Suppl 3):386–396. https://doi.org/10.1007/s00586-015-3806-4

    Article  PubMed  Google Scholar 

  82. Dahdaleh NS, Nixon AT, Lawton CD, Wong AP, Smith ZA, Fessler RG (2013) Outcome following unilateral versus bilateral instrumentation in patients undergoing minimally invasive transforaminal lumbar interbody fusion: a single-center randomized prospective study. Neurosurg Focus 35(2):E13. https://doi.org/10.3171/2013.5.FOCUS13171

    Article  PubMed  Google Scholar 

  83. Uribe JS, Myhre SL, Youssef JA (2016) Preservation or restoration of segmental and regional spinal lordosis using minimally invasive interbody fusion techniques in degenerative lumbar conditions: a literature review. Spine (Phila Pa 1976) 41(Suppl 8):S50–58. https://doi.org/10.1097/BRS.0000000000001470

    Article  Google Scholar 

  84. Ahmadian A, Deukmedjian AR, Abel N, Dakwar E, Uribe JS (2013) Analysis of lumbar plexopathies and nerve injury after lateral retroperitoneal transpsoas approach: diagnostic standardization. J Neurosurg Spine 18(3):289–297. https://doi.org/10.3171/2012.11.SPINE12755

    Article  PubMed  Google Scholar 

  85. Abel NA, Januszewski J, Vivas AC, Uribe JS (2018) Femoral nerve and lumbar plexus injury after minimally invasive lateral retroperitoneal transpsoas approach: electrodiagnostic prognostic indicators and a roadmap to recovery. Neurosurg Rev 41(2):457–464. https://doi.org/10.1007/s10143-017-0863-7

    Article  PubMed  Google Scholar 

  86. Gammal ID, Spivak JM, Bendo JA (2015) Systematic review of thigh symptoms after lateral transpsoas interbody fusion for adult patients with degenerative lumbar spine disease. Int J Spine Surg 9:62. https://doi.org/10.14444/2062

    Article  PubMed  PubMed Central  Google Scholar 

  87. Mobbs RJ, Phan K, Daly D, Rao PJ, Lennox A (2016) Approach-related complications of anterior lumbar interbody fusion: results of a combined spine and vascular surgical team. Global Spine J 6(2):147–154. https://doi.org/10.1055/s-0035-1557141

    Article  PubMed  Google Scholar 

  88. Asha MJ, Choksey MS, Shad A, Roberts P, Imray C (2012) The role of the vascular surgeon in anterior lumbar spine surgery. Br J Neurosurg 26(4):499–503. https://doi.org/10.3109/02688697.2012.680629

    Article  PubMed  Google Scholar 

  89. Garg J, Woo K, Hirsch J, Bruffey JD, Dilley RB (2010) Vascular complications of exposure for anterior lumbar interbody fusion. J Vasc Surg 51(4):946–950. https://doi.org/10.1016/j.jvs.2009.11.039 (discussion 950)

    Article  PubMed  Google Scholar 

  90. Rajaraman V, Vingan R, Roth P, Heary RF, Conklin L, Jacobs GB (1999) Visceral and vascular complications resulting from anterior lumbar interbody fusion. J Neurosurg 91(1 Suppl):60–64. https://doi.org/10.3171/spi.1999.91.1.0060

    Article  CAS  PubMed  Google Scholar 

  91. Comer GC, Smith MW, Hurwitz EL, Mitsunaga KA, Kessler R, Carragee EJ (2012) Retrograde ejaculation after anterior lumbar interbody fusion with and without bone morphogenetic protein-2 augmentation: a 10-year cohort controlled study. Spine J 12(10):881–890. https://doi.org/10.1016/j.spinee.2012.09.040

    Article  PubMed  Google Scholar 

  92. Lindley EM, McBeth ZL, Henry SE, Cooley R, Burger EL, Cain CM, Patel VV (2012) Retrograde ejaculation after anterior lumbar spine surgery. Spine (Phila Pa 1976) 37(20):1785–1789. https://doi.org/10.1097/BRS.0b013e31825752bc

    Article  Google Scholar 

  93. Burkus JK, Dryer RF, Peloza JH (2013) Retrograde ejaculation following single-level anterior lumbar surgery with or without recombinant human bone morphogenetic protein-2 in 5 randomized controlled trials: clinical article. J Neurosurg Spine 18(2):112–121. https://doi.org/10.3171/2012.10.SPINE11908

    Article  PubMed  Google Scholar 

  94. Malham GM, Parker RM, Ellis NJ, Blecher CM, Chow FY, Claydon MH (2014) Anterior lumbar interbody fusion using recombinant human bone morphogenetic protein-2: a prospective study of complications. J Neurosurg Spine 21(6):851–860. https://doi.org/10.3171/2014.8.SPINE13524

    Article  PubMed  Google Scholar 

  95. Gumbs AA, Hanan S, Yue JJ, Shah RV, Sumpio B (2007) Revision open anterior approaches for spine procedures. Spine J 7(3):280–285. https://doi.org/10.1016/j.spinee.2006.05.015

    Article  PubMed  Google Scholar 

  96. Klingler JH, Volz F, Kruger MT, Kogias E, Rolz R, Scholz C, Sircar R, Hubbe U (2015) accidental durotomy in minimally invasive transforaminal lumbar interbody fusion: frequency, risk factors, and management. ScientificWorldJournal 2015:532628. https://doi.org/10.1155/2015/532628

    Article  PubMed  PubMed Central  Google Scholar 

  97. Villavicencio AT, Burneikiene S, Roeca CM, Nelson EL, Mason A (2010) Minimally invasive versus open transforaminal lumbar interbody fusion. Surg Neurol Int 1:12. https://doi.org/10.4103/2152-7806.63905

    Article  PubMed  PubMed Central  Google Scholar 

  98. Magerl FP (1984) Stabilization of the lower thoracic and lumbar spine with external skeletal fixation. Clin Orthop Relat Res 189:125–141

    Google Scholar 

  99. Lowery GL, Kulkarni SS (2000) Posterior percutaneous spine instrumentation. Eur Spine J 9(Suppl 1):S126–130. https://doi.org/10.1007/pl00008318

    Article  PubMed  PubMed Central  Google Scholar 

  100. Foley KT, Gupta SK, Justis JR, Sherman MC (2001) Percutaneous pedicle screw fixation of the lumbar spine. Neurosurg Focus 10(4):E10. https://doi.org/10.3171/foc.2001.10.4.11

    Article  CAS  PubMed  Google Scholar 

  101. Foley KT, Gupta SK (2002) Percutaneous pedicle screw fixation of the lumbar spine: preliminary clinical results. J Neurosurg 97(1 Suppl):7–12. https://doi.org/10.3171/spi.2002.97.1.0007

    Article  PubMed  Google Scholar 

  102. Wang X, Borgman B, Vertuani S, Nilsson J (2017) A systematic literature review of time to return to work and narcotic use after lumbar spinal fusion using minimal invasive and open surgery techniques. BMC Health Serv Res 17(1):446. https://doi.org/10.1186/s12913-017-2398-6

    Article  PubMed  PubMed Central  Google Scholar 

  103. Zhao Q, Zhang H, Hao D, Guo H, Wang B, He B (2018) Complications of percutaneous pedicle screw fixation in treating thoracolumbar and lumbar fracture. Medicine (Baltimore) 97(29):e11560. https://doi.org/10.1097/MD.0000000000011560

    Article  Google Scholar 

  104. Wong AP, Shih P, Smith TR, Slimack NP, Dahdaleh NS, Aoun SG, El Ahmadieh TY, Smith ZA, Scheer JK, Koski TR, Liu JC, Fessler RG (2014) Comparison of symptomatic cerebral spinal fluid leak between patients undergoing minimally invasive versus open lumbar foraminotomy, discectomy, or laminectomy. World Neurosurg 81(3–4):634–640. https://doi.org/10.1016/j.wneu.2013.11.012

    Article  PubMed  Google Scholar 

  105. Mueller K, Zhao D, Johnson O, Sandhu FA, Voyadzis JM (2019) The Difference in surgical site infection rates between open and minimally invasive spine surgery for degenerative lumbar pathology: a retrospective single center experience of 1442 cases. Oper Neurosurg (Hagerstown) 16(6):750–755. https://doi.org/10.1093/ons/opy221

    Article  Google Scholar 

  106. Than KD, Mummaneni PV, Bridges KJ, Tran S, Park P, Chou D, La Marca F, Uribe JS, Vogel TD, Nunley PD, Eastlack RK, Anand N, Okonkwo DO, Kanter AS, Mundis GM Jr (2017) Complication rates associated with open versus percutaneous pedicle screw instrumentation among patients undergoing minimally invasive interbody fusion for adult spinal deformity. Neurosurg Focus 43(6):E7. https://doi.org/10.3171/2017.8.FOCUS17479

    Article  PubMed  Google Scholar 

  107. Uribe JS, Deukmedjian AR, Mummaneni PV, Fu KM, Mundis GM Jr, Okonkwo DO, Kanter AS, Eastlack R, Wang MY, Anand N, Fessler RG, La Marca F, Park P, Lafage V, Deviren V, Bess S, Shaffrey CI (2014) Complications in adult spinal deformity surgery: an analysis of minimally invasive, hybrid, and open surgical techniques. Neurosurg Focus 36(5):E15. https://doi.org/10.3171/2014.3.FOCUS13534

    Article  PubMed  Google Scholar 

  108. Park P, Wang MY, Lafage V, Nguyen S, Ziewacz J, Okonkwo DO, Uribe JS, Eastlack RK, Anand N, Haque R, Fessler RG, Kanter AS, Deviren V, La Marca F, Smith JS, Shaffrey CI, Mundis GM Jr, Mummaneni PV, International Spine Study G (2015) Comparison of two minimally invasive surgery strategies to treat adult spinal deformity. J Neurosurg Spine 22(4):374–380. https://doi.org/10.3171/2014.9.SPINE131004

    Article  PubMed  Google Scholar 

  109. Raad M, Puvanesarajah V, Harris A, El Dafrawy MH, Khashan M, Jain A, Hassanzadeh H, Kebaish KM (2019) The learning curve for performing three-column osteotomies in adult spinal deformity patients: one surgeon's experience with 197 cases. Spine J 19(12):1926–1933. https://doi.org/10.1016/j.spinee.2019.07.004

    Article  PubMed  Google Scholar 

  110. Mummaneni PV, Park P, Shaffrey CI, Wang MY, Uribe JS, Fessler RG, Chou D, Kanter AS, Okonkwo DO, Mundis GM, Eastlack RK, Nunley PD, Anand N, Virk MS, Lenke LG, Than KD, Robinson LC, Fu KM, International Spine Study G (2019) The MISDEF2 algorithm: an updated algorithm for patient selection in minimally invasive deformity surgery. J Neurosurg Spine 32(2):221–228. https://doi.org/10.3171/2019.7.SPINE181104

    Article  PubMed  Google Scholar 

  111. Raad M, Neuman BJ, Jain A, Hassanzadeh H, Passias PG, Klineberg E, Mundis GM, Protopsaltis TS, Miller EK, Smith JS, Lafage V, Hamilton DK, Bess S, Kebaish KM, Sciubba DM, International Spine Study G (2018) The use of patient-reported preoperative activity levels as a stratification tool for short-term and long-term outcomes in patients with adult spinal deformity. J Neurosurg Spine 29(1):68–74. https://doi.org/10.3171/2017.10.SPINE17830

    Article  PubMed  Google Scholar 

  112. Heini P, Scholl E, Wyler D, Eggli S (1998) Fatal cardiac tamponade associated with posterior spinal instrumentation A case report. Spine (Phila Pa 1976) 23(20):2226–2230. https://doi.org/10.1097/00007632-199810150-00017

    Article  CAS  Google Scholar 

  113. Mobbs RJ, Raley DA (2014) Complications with K-wire insertion for percutaneous pedicle screws. J Spinal Disord Tech 27(7):390–394. https://doi.org/10.1097/BSD.0b013e3182999380

    Article  PubMed  Google Scholar 

  114. Scheer JK, Harvey MJ, Dahdaleh NS, Smith ZA, Fessler RG (2014) K-Wire fracture during minimally invasive transforaminal lumbar interbody fusion: Report of six cases and recommendations for avoidance and management. Surg Neurol Int 5(Suppl 15):S520–522. https://doi.org/10.4103/2152-7806.148009

    Article  PubMed  PubMed Central  Google Scholar 

  115. Kouyoumdjian P, Gras-Combe G, Grelat M, Fuentes S, Blondel B, Tropiano P, Zairi F, Beaurain J, Charles YP, Dhenin A, Elfertit H, Le Roy J, Greffier J, Lonjon N (2018) Surgeon's and patient's radiation exposure during percutaneous thoraco-lumbar pedicle screw fixation: a prospective multicenter study of 100 cases. Orthop Traumatol Surg Res 104(5):597–602. https://doi.org/10.1016/j.otsr.2018.05.009

    Article  PubMed  Google Scholar 

  116. Kantelhardt SR, Martinez R, Baerwinkel S, Burger R, Giese A, Rohde V (2011) Perioperative course and accuracy of screw positioning in conventional, open robotic-guided and percutaneous robotic-guided, pedicle screw placement. Eur Spine J 20(6):860–868. https://doi.org/10.1007/s00586-011-1729-2

    Article  PubMed  PubMed Central  Google Scholar 

  117. Mason A, Paulsen R, Babuska JM, Rajpal S, Burneikiene S, Nelson EL, Villavicencio AT (2014) The accuracy of pedicle screw placement using intraoperative image guidance systems. J Neurosurg Spine 20(2):196–203. https://doi.org/10.3171/2013.11.SPINE13413

    Article  PubMed  Google Scholar 

  118. Fan Y, Du JP, Liu JJ, Zhang JN, Qiao HH, Liu SC, Hao DJ (2018) Accuracy of pedicle screw placement comparing robot-assisted technology and the free-hand with fluoroscopy-guided method in spine surgery: An updated meta-analysis. Medicine (Baltimore) 97(22):e10970. https://doi.org/10.1097/MD.0000000000010970

    Article  Google Scholar 

  119. Torres J, James AR, Alimi M, Tsiouris AJ, Geannette C, Hartl R (2012) Screw placement accuracy for minimally invasive transforaminal lumbar interbody fusion surgery: a study on 3-d neuronavigation-guided surgery. Global Spine J 2(3):143–152. https://doi.org/10.1055/s-0032-1326949

    Article  PubMed  PubMed Central  Google Scholar 

  120. Lian X, Navarro-Ramirez R, Berlin C, Jada A, Moriguchi Y, Zhang Q, Hartl R (2016) Total 3D Airo(R) navigation for minimally invasive transforaminal lumbar interbody fusion. Biomed Res Int 2016:5027340. https://doi.org/10.1155/2016/5027340

    Article  PubMed  PubMed Central  Google Scholar 

  121. Balling H, Blattert TR (2017) Rate and mode of screw misplacements after 3D-fluoroscopy navigation-assisted insertion and 3D-imaging control of 1547 pedicle screws in spinal levels T10–S1 related to vertebrae and spinal sections. Eur Spine J 26(11):2898–2905. https://doi.org/10.1007/s00586-017-5108-5

    Article  PubMed  Google Scholar 

  122. Waschke A, Walter J, Duenisch P, Reichart R, Kalff R, Ewald C (2013) CT-navigation versus fluoroscopy-guided placement of pedicle screws at the thoracolumbar spine: single center experience of 4500 screws. Eur Spine J 22(3):654–660. https://doi.org/10.1007/s00586-012-2509-3

    Article  PubMed  Google Scholar 

  123. Bydon M, Xu R, Amin AG, Macki M, Kaloostian P, Sciubba DM, Wolinsky JP, Bydon A, Gokaslan ZL, Witham TF (2014) Safety and efficacy of pedicle screw placement using intraoperative computed tomography: consecutive series of 1148 pedicle screws. J Neurosurg Spine 21(3):320–328. https://doi.org/10.3171/2014.5.SPINE13567

    Article  PubMed  Google Scholar 

  124. Fichtner J, Hofmann N, Rienmuller A, Buchmann N, Gempt J, Kirschke JS, Ringel F, Meyer B, Ryang YM (2018) Revision rate of misplaced pedicle screws of the thoracolumbar spine-comparison of three-dimensional fluoroscopy navigation with freehand placement: a systematic analysis and review of the literature. World Neurosurg 109:e24–e32. https://doi.org/10.1016/j.wneu.2017.09.091

    Article  PubMed  Google Scholar 

  125. Navarro-Ramirez R, Lang G, Lian X, Berlin C, Janssen I, Jada A, Alimi M, Hartl R (2017) Total navigation in spine surgery; a concise guide to eliminate fluoroscopy using a portable intraoperative computed tomography 3-dimensional navigation system. World Neurosurg 100:325–335. https://doi.org/10.1016/j.wneu.2017.01.025

    Article  PubMed  Google Scholar 

  126. Moore B, Womack KR, Nguyen G, Foster N, Richardson W, Yoshizumi T (2018) Patient dose comparison for intraoperative imaging devices used in orthopaedic lumbar spinal surgery. J Am Acad Orthop Surg Glob Res Rev 2(7):e030. https://doi.org/10.5435/JAAOSGlobal-D-18-00030

    Article  PubMed  PubMed Central  Google Scholar 

  127. Scarone P, Vincenzo G, Distefano D, Del Grande F, Cianfoni A, Presilla S, Reinert M (2018) Use of the airo mobile intraoperative ct system versus the o-arm for transpedicular screw fixation in the thoracic and lumbar spine: a retrospective cohort study of 263 patients. J Neurosurg Spine 29(4):397–406. https://doi.org/10.3171/2018.1.SPINE17927

    Article  PubMed  Google Scholar 

  128. Lau D, DiGiorgio AM, Chan AK, Dalle Ore CL, Virk MS, Chou D, Bisson EF, Mummaneni PV (2019) Applicability of cervical sagittal vertical axis, cervical lordosis, and T1 slope on pain and disability outcomes after anterior cervical discectomy and fusion in patients without deformity. J Neurosurg Spine:1–8. doi: 10.3171/2019.7.SPINE19437

  129. Zhang Q, Han XG, Xu YF, Liu YJ, Liu B, He D, Sun YQ, Tian W (2019) Robot-assisted versus fluoroscopy-guided pedicle screw placement in transforaminal lumbar interbody fusion for lumbar degenerative disease. World Neurosurg. https://doi.org/10.1016/j.wneu.2019.01.097

    Article  PubMed  Google Scholar 

  130. Staartjes VE, Klukowska AM, Schroder ML (2018) Pedicle Screw Revision in robot-guided, navigated, and freehand thoracolumbar instrumentation: a systematic review and meta-analysis. World Neurosurg 116(433–443):e438. https://doi.org/10.1016/j.wneu.2018.05.159

    Article  Google Scholar 

  131. Menger RP, Savardekar AR, Farokhi F, Sin A (2018) A Cost-Effectiveness analysis of the integration of robotic spine technology in spine surgery. Neurospine 15(3):216–224. https://doi.org/10.14245/ns.1836082.041

    Article  PubMed  PubMed Central  Google Scholar 

  132. Dahlin E (2019) Are robots stealing our jobs? Socius 5:2378023119846249. https://doi.org/10.1177/2378023119846249

    Article  Google Scholar 

Download references

Funding

No funding was received for this work.

Author information

Authors and Affiliations

Authors

Contributions

IH, K-MF, JSU, DC, PVM: Made substantial contributions to the conception or design of the work; or the acquisition, analysis, or interpretation of data; or the creation of new software used in the work. IH, K-MF, JSU, DC, PVM: Drafted the work or revised it critically for important intellectual content. IH, K-MF, JSU, DC, PVM: Approved the version to be published. IH, K-MF, JSU, DC, PVM: Agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved

Corresponding author

Correspondence to Kai-Ming Fu.

Ethics declarations

Conflict of interest

IH: Nothing to disclose. KMF: Consultant for Globus, SI-Bone, DePuy-Synthes. JSU: Research support, stock options, and consulting fees from NuVasive. Consultant for SI-Bone. DC: Consultant for Globus and Medtronic, royalty from Globus. PVM: Consultant for DePuy Synthes, Globus, and Stryker; direct stock ownership in Spinicity/ISD; support of non–study-related clinical or research effort from NREF, AOSpine, and ISSG; royalties from DePuy Synthes, Thieme Publishers, and Springer Publishers.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussain, I., Fu, KM., Uribe, J.S. et al. State of the art advances in minimally invasive surgery for adult spinal deformity. Spine Deform 8, 1143–1158 (2020). https://doi.org/10.1007/s43390-020-00180-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43390-020-00180-8

Keywords

Navigation