Skip to main content
Log in

High precision harmonic controller combined with repetitive and modulated model predictive controllers

  • Original Article
  • Published:
Journal of Power Electronics Aims and scope Submit manuscript

Abstract

This paper proposes a high precision harmonic controller combined with repetitive and modulated model predictive controllers for standalone inverter applications. The proposed method is configured as a dual loop controller that includes an outer voltage controller with a plug-in repetitive controller (RC) and an inner current controller with a modulated model predictive controller (MMPC). The RC in the outer control loop effectively synthesizes the harmonic current reference when connecting a nonlinear load with a periodic harmonic current. Then, the MMPC-based current controller, with its ultra-wide bandwidth, regulates the harmonic current without additional harmonic current controllers. Thus, the abilities to precisely control the harmonic current and improve the output voltage quality are achieved. To combine the MMPC and the repetitive controller, an equivalent transfer function is derived from the ac sweep result of the MMPC. The stability of the RC is analyzed by applying the equivalent transfer function to the closed-loop voltage control model. To validate the performance of the proposed control method, a 3 kVA single phase 3-level T-type inverter prototype is built and tested. The harmonic compensation and dynamic performance of the proposed method are verified by simulation and experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

All data generated or analysed during this study are available from the corresponding author on reasonable request.

References

  1. Shen, G., Zhu, X., Zhang, J., Xu, D.: A new feedback method for PR current control of LCL-filter-based grid-connected inverter. IEEE. Trans. Ind. Electron. 57(6), 2033–2041 (2010)

    Article  Google Scholar 

  2. Lorenzini, C., Pereira, L.F.A., Bazanella, A.S., Silva, G.R.G.D.: Single-phase uninterruptible power supply control: a model-free proportional-multiresonant method. IEEE Trans. Ind. Electron. 69(3), 2967–2975 (2022)

    Article  Google Scholar 

  3. Lou, G., Yang, Q., Gu, W., Quan, X., Guerrero, J.M., Li, S.: Analysis and design of hybrid harmonic suppression scheme for VSG considering nonlinear loads and distorted grid. IEEE Trans. Energy. Conv. 36(4), 3096–3107 (2021)

    Article  Google Scholar 

  4. Jafarian, H., Kim, N., Parkhideh, B.: Decentralized control strategy for ac-stacked pv inverter architecture under grid background harmonics. IEEE J. Em. Select. Top. Power. Electron. 6(1), 84–93 (2018)

    Google Scholar 

  5. Liu, Y., Wu, W., He, Y., Lin, Z., Blaabjerg, F., Chung, H.S.H.: An efficient and robust hybrid damper for LCL- or LLCL-based grid-tied inverter with strong grid-side harmonic voltage effect rejection. IEEE Trans. Ind. Electron. 63(2), 926–936 (2016)

    Article  Google Scholar 

  6. R. Nasiri and A. Radan,: Pole-placement control strategy for 4-leg voltage-source inverters. In: 2010 1st Power Electronic and Drive Systems and Technologies Conference (PEDSTC). pp 74–79

  7. Orts-Grau, S., Balaguer-Herrero, P., Alfonso-Gil, J.C., Martínez-Marquez, C.I., Martínez-Navarro, G., Gimeno-Sales, F.J., et al.: Switching pattern improvement for one-cycle zero-integral-error current controller. IEEE Access. 10, 158–167 (2022)

    Article  Google Scholar 

  8. Huang, S.S., Konishi, Y., Yang, Z.Z., Hsieh, M.J.: Observer-based capacitor current sensorless control applied to a single-phase inverter system with seamless transfer. IEEE Trans. Power. Electron. 34(3), 2819–2828 (2019)

    Article  Google Scholar 

  9. Li, J., Sun, Y., Li, X., Xie, S., Lin, J., Su, M.: Observer-based adaptive control for single-phase UPS inverter under nonlinear load. IEEE Trans. Transport. Electrific. 8(3), 2785–2796 (2022)

    Article  Google Scholar 

  10. Pichan, M., Rastegar, H.: Sliding-mode control of four-leg inverter with fixed switching frequency for uninterruptible power supply applications. IEEE Trans. Ind. Electron. 64(8), 6805–6814 (2017)

    Article  Google Scholar 

  11. Repecho, V., Biel, D., Olm, J.M.: A Simple switching-frequency-regulated sliding-mode controller for a VSI with a full digital implementation. IEEE J. Em. Select. Top. Power Electron. 9(1), 569–579 (2021)

    Google Scholar 

  12. Yuan L, Xiu C, Ma X (2022) Sliding mode control strategy for microgrid inverter systems. J. Power Electron. https://doi.org/10.1007/s43236-022-00576-x

  13. Mattavelli, P., Marafao, F.P.: Repetitive-based control for selective harmonic compensation in active power filters. IEEE Trans. Ind. Electron. 51(5), 1018–1024 (2004)

    Article  Google Scholar 

  14. Lei, W., Nie, C., Chen, M., Wang, H., Wang, Y.: A fast-transient repetitive control strategy for programmable harmonic current source. J. Power Electron. 17, 172–180 (2017)

    Article  Google Scholar 

  15. Pan, G., Gong, F., Jin, L., Wu, H., Chen, S.: LCL APF based on fractional-order fast repetitive control strategy. J. Power Electron. 21, 1508–1519 (2021)

    Article  Google Scholar 

  16. Lv, Z.-K., Sun, L., Duan, J.-D., Tian, B., Qin, H.: Repetitive control with specific harmonic gain compensation for cascaded inverters under rectifier loads. J. Power Electron. 18, 1670–1682 (2018)

    Google Scholar 

  17. Acuña, P., Morán, L., Rivera, M., Aguilera, R., Burgos, R., Agelidis, V.G.: A single-objective predictive control method for a multivariable single-phase three-level NPC converter-based active power filter. IEEE Trans. Ind. Electron. 62(7), 4598–4607 (2015)

    Article  Google Scholar 

  18. Ferreira, S.C., Gonzatti, R.B., Pereira, R.R., Silva, C.H.D., Silva, L.E.B.D., Lambert-Torres, G.: Finite control set model predictive control for dynamic reactive power compensation with hybrid active power filters. IEEE Trans. Ind. Electron. 65(3), 2608–2617 (2018)

    Article  Google Scholar 

  19. Antoniewicz, K., Jasinski, M., Kazmierkowski, M.P., Malinowski, M.: Model predictive control for three-level four-leg flying capacitor converter operating as shunt active power filter. IEEE Trans. Ind. Electron. 63(8), 5255–5262 (2016)

    Google Scholar 

  20. Han, J., Zhao, P., Yao, G., Chen, H., Wang, Y., Benbouzid, M., et al.: Model predictive current control of asymmetrical hybrid cascaded multilevel inverter. J. Power Electron. 22, 580–592 (2022)

    Article  Google Scholar 

  21. Long, B., Cao, T., Fang, W., Chong, K.T., Guerrero, J.M.: Model predictive control of a three-phase two-level four-leg grid-connected converter based on sphere decoding method. IEEE Trans. Power Electron. 36(2), 2283–2297 (2021)

    Article  Google Scholar 

  22. Komurcugil, H., Bayhan, S., Guler, N., Blaabjerg, F.: An effective model predictive control method with self-balanced capacitor voltages for single-phase three-level shunt active filters. IEEE Access. 9, 103811–103821 (2021)

    Article  Google Scholar 

  23. Alhosaini, W., Wu, Y., Zhao, Y.: An enhanced model predictive control using virtual space vectors for grid-connected three-level neutral-point clamped inverters. IEEE Trans. Energy Conver. 34(4), 1963–1972 (2019)

    Article  Google Scholar 

  24. Busquets-Monge, S., Bordonau, J., Boroyevich, D., Somavilla, S.: The nearest three virtual space vector PWM - a modulation for the comprehensive neutral-point balancing in the three-level NPC inverter. IEEE Trans. Power Electron. Lett. 2(1), 11–15 (2004)

    Article  Google Scholar 

  25. Pou, J., Pindado, R., Boroyevich, D., Rodriguez, P.: Evaluation of the low-frequency neutral-point voltage oscillations in the three-level inverter. IEEE Trans. Ind. Electron. 52(6), 1582–1588 (2005)

    Article  Google Scholar 

  26. Yang, Y., Pan, J., Wen, H., Zhang, X., Norambuena, M., Xu, L., et al.: Computationally efficient model predictive control with fixed switching frequency of five-level ANPC converters. IEEE Trans. Ind. Electron. 69(12), 11903–11914 (2022)

    Article  Google Scholar 

  27. Tarisciotti, L., Formentini, A., Gaeta, A., Degano, M., Zanchetta, P., Rabbeni, R., et al.: Model predictive control for shunt active filters with fixed switching frequency. IEEE Trans. Industry. Applic. 53(1), 296–304 (2017)

    Article  Google Scholar 

  28. Jin, N., Chen, M., Guo, L., Li, Y., Chen, Y.: Double-vector model-free predictive control method for voltage source inverter with visualization analysis. IEEE Trans. Ind. Electron. 69(10), 10066–10078 (2022)

    Article  Google Scholar 

  29. Xiao, D., Alam, K.S., Norambuena, M., Rahman, M.F., Rodriguez, J.: Modified modulated model predictive control strategy for a grid-connected converter. IEEE Trans. Ind. Electron. 68(1), 575–585 (2021)

    Article  Google Scholar 

  30. Tarisciotti, L., Zanchetta, P., Watson, A., Clare, J.C., Degano, M., Bifaretti, S.: Modulated model predictive control for a three-phase active rectifier. IEEE Trans. Industry. Applic. 51(2), 1610–1620 (2015)

    Article  Google Scholar 

  31. Wang Q, Rivera M, Riveros JA, Wheeler P (2019) Modulated Model Predictive Current Control for PMSM Operating With Three-level NPC Inverter. In: 2019 IEEE 15th Brazilian Power Electronics Conference and 5th IEEE Southern Power Electronics Conference (COBEP/SPEC). pp 1–5.

  32. Xiao, D., Alam, K.S., Akter, M.P., Shakib, S.M.S.I., Zhang, D., Rahman, M.F.: Modulated model predictive control for four-leg inverters with online duty ratio optimization. IEEE Trans. Indus. Applic. 56(3), 3114–3124 (2020)

    Article  Google Scholar 

  33. Kang, M., Kim, J., Han, S., Cho, Y., Lee, E.: Modulated model predictive current control of HERIC AFE converter equipped with LCL filter. J. Power Electron. 22, 151–161 (2022)

    Article  Google Scholar 

  34. Cho, Y., Lai, J.S.: Digital plug-in repetitive controller for single-phase bridgeless PFC converters. IEEE Trans. Power Electron. 28(1), 165–175 (2013)

    Article  Google Scholar 

  35. Keliang, Z., Wang, D.: Digital repetitive controlled three-phase PWM rectifier. IEEE Trans. Power Electron. 18(1), 309–316 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Human Resources Program in Energy Technology of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. 20204010600220), and Korea Electric Power Corporation through Korea Electrical Engineering & Science Research Institute. [Grant number: R21XO01-46]

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Younghoon Cho.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, D., Lee, JY., Choi, S. et al. High precision harmonic controller combined with repetitive and modulated model predictive controllers. J. Power Electron. 23, 984–992 (2023). https://doi.org/10.1007/s43236-023-00627-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43236-023-00627-x

Keywords

Navigation