Skip to main content

Digital Control Strategy for Harmonic Compensation of Dynamic Voltage Restorer

  • Conference paper
Intelligent Computing for Sustainable Energy and Environment (ICSEE 2012)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 355))

Abstract

To make dynamic voltage restorer (DVR) compensate the low-order harmonic voltage, overcome the effects on system performance of digital control, and improve the voltage compensation effect, a dual closed-loop digital PR control strategy, consisting of voltage outer loop fundamental proportional resonant (PR) control and current inner loop low-order harmonic PR control is proposed. The discretization methods of PR controller are analysed, a detailed analysis and parameter design of the fundamental PR controller and the 3rd, 5th and 7th harmonic PR controller in the discrete domain are carried out. The analysis shows that the harmonic PR controller can effectively compensate for the 3rd, 5th and 7th harmonic voltage, the fundamental PR controlled can achieve zero steady-state error tracking and inhibit the effects on output voltage of load current, and digital control system has good dynamic response characteristics. Based on the theoretical analysis, 11KVA DVR prototype is developed and tested. The effectiveness and feasibility of the proposed control strategy are verified by experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Shi, W., Tang, G., Li, J.: Double feed-forward control strategy for dynamic voltage restorer. Electric Power Automation Equipment 27(2), 11–15 (2007)

    Google Scholar 

  2. Li, Y., Vilathgamuwa, D.M., Lohp, C.: Design and comparison of high performance stationary-frame controllers of DVR implementation. IEEE Transactions on Power Electronics 22(7), 602–612 (2007)

    Article  Google Scholar 

  3. Shen, K., Wang, J., Cai, X., et al.: Proportional-resonant control for dynamic voltage restorer. Electric Power Automation Equipment 30(5), 65–69 (2010)

    Google Scholar 

  4. Li, Y., Vilathgamuwa, D.M.: Investigation and improvement of transient response of DVR at medium voltage level. IEEE Transactions on Industry Applications 43(3), 1309–1319 (2007)

    Article  Google Scholar 

  5. Sanchez, P.R., Acha, E., Calderon, J.E.O.: A versatile control scheme for a dynamic voltage restorer for power-quality improvement. IEEE Transactions on Power Delivery 24(1), 277–283 (2009)

    Article  Google Scholar 

  6. Shi, W., Tang, G., Li, J.: Double feed-forward control strategy for dynamic voltage restorer. Electric Power Automation Equipment 27(2), 11–15 (2007)

    Google Scholar 

  7. Wang, T., Xue, Y., Choi, S.S.: Review of dynamic voltage restorer. Automation of Electric Power Systems 31(9), 101–107 (2007)

    Google Scholar 

  8. Liu, C., Ma, W., Sun, C., et al.: Design of Output LC Filter and Low Order Harmonics Suppression in High Power 400Hz Inverter. Transactions of China Electrotechnical Society 26(6), 129–136 (2011)

    Google Scholar 

  9. Ghosh, A., Jindal, A.K., Joshi, A.: Design of a capacitor-supported dynamic voltage restorer(DVR) for unbalanced and distorted loads. IEEE Transactions on Power Delivery 19(1), 405–413 (2004)

    Article  Google Scholar 

  10. Kim, H., Lee, S.-J., Sul, S.-K.: A calculation for the compensation voltages in dynamic voltage restorers by use of PQR power theory. In: Nineteenth Annual IEEE Applied Power Electronics Conference and Exposition, APEC 2004, vol. 1(11), pp. 573–579 (2004)

    Google Scholar 

  11. Mihalache, L.: DSP control of 400 Hz inverters for aircraft applications. In: Industry Applications Annual Meeting, Jacksonville, Florida, USA (2002)

    Google Scholar 

  12. Mihalache, L.: Improved load disturbance rejection method for 400 Hz GPU inverters. In: Applied Power Electronics Conference and Exposition, Anaheim, California, USA (2004)

    Google Scholar 

  13. Sato, Y., Ishizuka, T., Nezu, K., et al.: A new control strategy for voltage-type PWM rectifiers to realize zero steady-state control error in input current. IEEE Transactions on Industry Applications 34(3), 480–486 (1998)

    Article  Google Scholar 

  14. Li, Z., Wang, P., Li, Y., et al.: 400Hz High-Power Voltage source Inverter With Digital Control. Proceeding of the CSEE 29(6), 36–42 (2009)

    Google Scholar 

  15. Bojoi, R.I., Griva, G., Bostan, V., et al.: Current control strategy for power conditioners using sinusoidal signal integrators in synchronous reference frame. IEEE Transactions on Power Electronics 20(6), 1402–1412 (2005)

    Article  Google Scholar 

  16. Liserre, M., Teodorescu, R., Blaabjerg: Double harmonic control for three-phase systems with the use of resonant current controllers in a rotating frame. IEEE Transactions on Power Electronics 21(3), 836–841 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, J., Hu, X., Hu, G., Wang, Y. (2013). Digital Control Strategy for Harmonic Compensation of Dynamic Voltage Restorer. In: Li, K., Li, S., Li, D., Niu, Q. (eds) Intelligent Computing for Sustainable Energy and Environment. ICSEE 2012. Communications in Computer and Information Science, vol 355. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37105-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37105-9_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37104-2

  • Online ISBN: 978-3-642-37105-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics