Skip to main content
Log in

Regolith profiles developed from a granitic parent rock in a sub-humid climate: implications for pedogenesis and chemical mobility of elements

  • Research
  • Published:
Journal of Sedimentary Environments Aims and scope Submit manuscript

Abstract

Regolith profiles develop as a result of weathering of the parent rocks under varying climatic conditions, and weathering trends and mobility of various elements vary according to the parent rocks and climatic conditions. In the present study, regolith profiles developed from a granitic rock near Khajuraho town of central India are investigated to understand the nature of pedogenesis, weathering trend and the mobility of different elements under a sub-humid climatic condition. The regolith profiles show the dominance of oxidation process with the occurrence of clay and ferruginous coatings around the skeletal grains. They contain quartz, K-feldspars, and albite, besides clay minerals in the upper horizons. The regolith profiles show more mobility of Si and Na, which are depleted in the regolith profiles in comparison to the parent rock. The TiO2 vs. SiO2 plot shows strong negative correlation, while the TiO2 vs. Na2O plot shows weak negative correlation because of their depletion in the regolith samples. The regolith contains appreciable amount (4.0–6.0%) of K2O that shows largely increasing trend up-section. In the regolith samples, Chemical Index of Alteration (CIA) and Plagioclase Index of Alteration (PIA) values are varying from 56.7 to 75.7 and 66.9 to 92.2, respectively. Both CIA and PIA of the regolith samples suggest moderate weathering intensity. The regolith samples show light rare earth elements (LREEs) enrichment in comparison to the parent rock because of their absorption by the clay minerals. The negative europium (Eu) anomaly might have been caused due to the weathering of plagioclases in them. The heavy rare earth elements (HREEs) show negligible variation in comparison to the parent rock despite moderate weathering under sub-humid climates in the regolith samples. The occurrence of K2O in the regolith obtained from the granite may increase nutrient value for agricultural purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Armstrong-Altrin, J. S., Lee, Y. I., Verma, S. P., & Ramasamy, S. (2004). Geochemistry of sandstones from the upper miocene kudankulam formation, southern india: Implications for provenance, weathering, and tectonic setting. Journal Sedimentary Research, 74, 285–297.

    Article  CAS  ADS  Google Scholar 

  • Basu, A. K. (2007). Role of Bundelkhand granite massif and the Son-Narmada mega fault in Precambrian crustal evolution and tectonism in central and western India. Journal Geological Society India, 70, 745–770.

    Google Scholar 

  • Bhat, N. A., Singh, B. P., Nath, S., Bhat, A. A., & Guha, D. B. (2019). Geochemical characterisation of stream sediments and soil samples from Karewa deposits of south Kashmir, NW Himalaya. India. Environmental Earth Sciences, 78, 278.

    Article  ADS  Google Scholar 

  • Bhatia, M. R., & Crook, K. A. W. (1986). Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins. Contribution Mineralogy Petrology, 92, 181–193.

    Article  ADS  Google Scholar 

  • Bhattacharyya, T., Chandran, P., Ray, S., & Pal, D. K. (2015). Soil classification following the US taxonomy: An Indian commentary. Soil Horizons, 56, 1–16.

    Article  Google Scholar 

  • Birkeland, P. W., 1999. Soils and Geomorphology, Oxford University Press, New York, 3rd edition, 430p.

  • Braun, J. J., Ngoupayou, J. V., Dupre, B., Bedimo, J. P. B., Boeglin, J. L., Robain, H., Nyeck, B., Freydier, R., Nkamdjou, L. S., Rouiller, J., & Muller, J. P. (2005). Present weathering rates in a humid tropical watershed: Nsimi. South Cameroon. Geochimica Et Cosmochimica Acta, 69(2), 357–387.

    Article  CAS  ADS  Google Scholar 

  • Cullers, R. L., & Graf, J. (1984). Rare Earth Element in Igneous Rocks of the ContinentalCrust: Intermediate and Silicic Rocks, Ore Petrogenesis. In P. Henderson (Ed.), Rare Earth Geochemistry (pp. 275–316). Elsevier.

    Chapter  Google Scholar 

  • Fedo, C. M., Nesbitt, H. W., & Young, G. M. (1995). Unravelling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleo-weathering conditions and provenance. Geology, 23, 921–924.

    Article  CAS  ADS  Google Scholar 

  • Frings, P. J., & Buss, L. H. (2019). The central role of weathering in the geosciences. Elements, 15(4), 229–234.

    Article  CAS  ADS  Google Scholar 

  • Fritz, S. J. (1988). A comparative study of gabbro and granite weathering. Chemical Geology, 68, 275–290.

    Article  CAS  ADS  Google Scholar 

  • Gong, Q., Deng, J., Yang, L., Zhang, J., Wang, Q., & Zhang, G. (2011). Behavior of major and trace elements during weathering of sericite–quartz schist. Journal Asian Earth Sciences., 42(1–2), 1–13.

    Article  ADS  Google Scholar 

  • Hunt, A., Egli, M., & Faybishenko, B. (2021). Hydrogeology, chemical weathering, and soil formation: 257 (Geophysical Monograph Series) (p. 288p). American Geophysical Union.

    Book  Google Scholar 

  • Jenny, H. (1980). The soil resource: origin and behaviour (p. 377). Springer-Verlag.

    Book  Google Scholar 

  • Jiang, K., Qi, H. W., & Hu, R. Z. (2018). Element mobilization and redistribution under extreme tropical weathering of basalts from the Hainan Island, South China. Journal Asian Earth Sciences, 158, 80–102.

    Article  ADS  Google Scholar 

  • Kanhaiya, S., & Singh, B. P. (2014). Spatial variation of textural parameters in a small river: An example from Khurar River, Khajuraho, Chhatarpur District, Madhya Pradesh, India. Global Journal Earth Science & Engineer., 1, 34–42.

    Article  Google Scholar 

  • Kanhaiya, S., Singh, B. P., & Singh, S. (2018). Mineralogical and geochemical characteristics of the sediments solely derived from the Bundelkhand Granitic Complex, central India: Implications to provenance and source area weathering. Geochemistry International, 56, 1245–1262.

    Article  CAS  ADS  Google Scholar 

  • Kanhaiya, S., Singh, B. P., Singh, S., Mittal, P., & Srivastava, V. K. (2019). Morphometric analysis, bedload sediments, and weathering intensity in the Khurar River Basin, central India. Geological Journal, 54, 466–481.

    Article  ADS  Google Scholar 

  • Kaur, P., Zeh, A., & Chaudhuri, N. (2014). Characterization and U-Pb–Hf isotope record of the 3.55 Ga. felsic crust from the Bundelkhand craton, northern India. Precambrian Research, 255, 236–244.

    Article  CAS  ADS  Google Scholar 

  • Khanna, P. P., Saini, N. K., Mukherjee, P. K., & Purohit, K. K. (2009). An appraisal of ICP-MS technique for determination of REEs: Long term QC assessment of Silicate rock analysis. Himalayan Geology, 30, 95–99.

    Google Scholar 

  • Kraus, M. J. (1999). Palaeosols in clastic sedimentary rocks: Their geological applications. Earth Science Reviews, 47, 41–70.

    Article  CAS  ADS  Google Scholar 

  • Kumar, S., Raju, S., Pathak, M., & Pandey, A. (2010). Magnetic susceptibility mapping of felsic magmatic litho units in the central part of Bundelkhand massif, central India. Journal Geological Society India, 75, 539–548.

    Article  CAS  Google Scholar 

  • Mao, H., Liu, C., Zhao, Z., & Yang, J. (2017). Distribution of rare earth elements of granitic regolith under the influence of climate. Acta Geochimica, 36, 440–445.

    Article  CAS  Google Scholar 

  • Marriot, S. B., & Wright, V. P. (1993). Palaeosols as indicators of geomorphic stability in two Old Red Sandstone suites. Journal of the Geological Society, 150, 1109–1120.

    Article  ADS  Google Scholar 

  • Marsh, J. S. (1991). REE fractionation and Ce anomalies in weathered karoo dolerite. Chemical Geology, 90, 189–194.

    Article  CAS  ADS  Google Scholar 

  • Maynard, J. B. (1992). Chemistry of modern soils as a guide to interpreting Precambrian soils. Journal Geology, 100, 279–289.

    Article  ADS  Google Scholar 

  • McDonough, W. F., & Sun, S. S. (1995). The composition of the Earth. Chemical Geology, 120, 223–253.

    Article  CAS  ADS  Google Scholar 

  • McLennan, S. M. (1993). Weathering and global denudation. Journal. Geology, 101, 295–303.

    Google Scholar 

  • Mondal, M. E. A., Goswami, J. N., Deomurari, M. P., & Sharma, K. K. (2002). Ion microprobe 207Pb/206Pb ages of zircons from the Bundelkhand massif, northern India: Implications for crustal evolution of the Bundelkhand-Aravalli protocontinent. Precambrian Research, 11, 85–100.

    Article  ADS  Google Scholar 

  • Nesbitt, H. W., & Young, G. M. (1982). Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299, 715–717.

    Article  CAS  ADS  Google Scholar 

  • Nesbitt, H. W., & Young, G. M. (1984). Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochimica Et Cosmochimica Acta, 54, 1523–1534.

    Article  ADS  Google Scholar 

  • Pettijohn, F. J. (1984). Sedimentary Rocks (3rd ed., p. 628p). CBS Publishers.

    Google Scholar 

  • Plumper, O., & Putnis, A. (2009). The complex hydrothermal history of granitic rocks: Multiple feldspar replacement reactions under subsolidus conditions. Journal Petrology, 50, 967–987.

    Article  ADS  Google Scholar 

  • Pokrovsky, O. S., Schott, J., Kudryavtzev, D. I., & Dupr´e, B. (2005). Basalt weathering in Central Siberia under permafrost conditions. Geochimica Et Cosmochimica Acta, 69(24), 5659–5680.

    Article  CAS  ADS  Google Scholar 

  • Riebe, C. S., Kirchner, J. W., & Finkel, R. C. (2003). Long-term rates of chemical weathering and physical erosion from cosmogenic nuclides and geochemical mass balance. Geochimica Et Cosmochimica Acta, 67(22), 4411–4427.

    Article  CAS  ADS  Google Scholar 

  • Rudnick, R. L., & Gao, S. (2003). Composition of the continental crust. Treatise Geochemistry, 3, 1–64.

    ADS  Google Scholar 

  • Saini, N. K., Mukherjee, P. K., Rathi, M. S., & Khanna, P. P. (2000). Evaluation of energy dispersive X-ray fluorescence spectrometry in the analysis of silicate rocks using pressed powder pellets. X-Ray Spectroscopy, 29, 166–172.

    Article  CAS  ADS  Google Scholar 

  • Santos, J. C. B., Le Pera, E., Oliveira, C. S., Souza Junior, V. S., Pedron, F. A., Correa, M. M., & Azevedo, A. C. (2019). Impact of weathering on REE distribution in soil-saprolite profiles developed on orthogneisses in Borborema Province, NE Brazil. Geoderma, 347, 103–117.

    Article  CAS  ADS  Google Scholar 

  • Sarkar, A., Paul, D. K., Potts, P. J. (1996) Geochronology and geochemistry of mid-Archaean trondhjemitic gneisses from the Bundelkhand craton, central India. In: Saha, A.K. (Ed.), Recent Researches in Geology, 16, 76–92.

  • Shapiro, L., & Brannock, W. W. (1962). Rapid analyses of silicate, carbonate and phosphate rocks. US Geological Survey Bulletin, 48, 49–55.

    Google Scholar 

  • Sharma, A., & Rajamani, V. (2000). Major element, REE, and other trace element behaviour in amphibolites weathering under semi-arid conditions in southern India. Journal Geology, 108, 487–496.

    Article  CAS  ADS  Google Scholar 

  • Silva, B. P. C., Silva, M. L. N., Silva, S. H. G., Silva, A. C., da Rocha, H. R., Inda, A. V., Mancini, M., & Curi, N. (2022). From rock to soil: Elemental mobility during pedogenesis in a deep Ultisol profile at the Mantiqueira Mountain Range. Southeastern Brazil. Geoderma Regional, 31, e00576.

    Article  Google Scholar 

  • Singh, B. P., Lee, Y. I., Pawar, J. S., & Charak, R. S. (2007). Biogenic features in calcretes developed on mudstone: Examples from Paleogene sequences of the Himalaya, India. Sedimentary Geology, 201, 149–156.

    Article  ADS  Google Scholar 

  • Singh, B. P., & Srivastava, V. K. (2019). Petrographical, mineralogical and geochemical characteristics of the Paleocene lateritic bauxite deposits of Kachchh Basin, western India. Geological Journal, 54, 2588–2607.

    Article  CAS  ADS  Google Scholar 

  • Singh, B. P., Tandon, S. K., Singh, G. P., & Pawar, J. S. (2009). Paleosols in early Himalayan foreland basin sequences demonstrate latitudinal shift-related long-term climatic change. Sedimentology, 65, 1464–1487.

    Article  ADS  Google Scholar 

  • Singh, P. (2009a). Major, trace and REE geochemistry of the Ganga River sediments: Influence of provenance and sedimentary processes. Chemical Geology, 266, 242–255.

    Article  ADS  Google Scholar 

  • Singh, P. (2009b). Geochemistry and provenance of stream sediments of the Ganga River and its major tributaries in the Himalayan region, India. Chemical Geology, 266, 220–236.

    Article  Google Scholar 

  • Singh, P. K., Vema, S. K., Singh, V. K., Moreno, J. A., Oliveira, E. P., & Mehta, P. (2019). Geochemistry and petrogenesis of sanukitoids and high-K anatectic granites from the Bundelkhand Craton, India: Implications for late-Archean crustal evolution. Journal of Asian Earth Sciences, 174, 263–282.

    Article  ADS  Google Scholar 

  • Stork, A. L., Smith, D. K., & Gill, J. B. (1987). Evaluation of geochemical reference standards by X-ray fluorescence analysis. Geostandard Newsletter., 11, 107–113.

    Article  CAS  Google Scholar 

  • Turner, B. F., Stallard, R. F., & Brantley, S. L. (2003). Investigation of in situ weathering of quartz diorite bedrock in the Rio Icacos basin, Luquillo Experimental Forest. Puerto Rico. Chemical Geology, 202(3–4), 313–341.

    Article  CAS  ADS  Google Scholar 

  • USDA. (1999). Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys (2nd ed., p. 886p). US Government.

    Google Scholar 

  • Verma, M., Kanhaiya, S., Singh, B. P., & Singh, S. (2022). Signatures of provenance, tectonics and chemical weathering in the Tawi River sediments of the western Himalayan Foreland, India. Journal Sedimentary Environments, 7, 425–441.

    Article  ADS  Google Scholar 

  • Verma, S. K., Verma, S. P., Oliveira, P. E., Singh, V. K., & Moreno, J. A. (2016). LA-SF-ICP-MS zircon U-Pb geochronology of granitic rocks from the central Bundelkhand greenstone complex, Bundelkhand craton, India. Journal Asian Earth Sciences, 118, 125–137.

    Article  ADS  Google Scholar 

  • Vyshnavi, S., & Islam, R. (2015). Water-rock interaction on the development of granite gneissic weathered profiles in Garhwal Lesser Himalaya. India. Journal Earth System. Science, 124, 945–963.

    Article  CAS  ADS  Google Scholar 

  • Vyshnavi, S., Islam, R., & Sundriyal, Y. P. (2014). A comparative study of soil profiles developed on metavolcanic (basaltic) rocks in two different watersheds of Garhwal Himalaya. Current Science, 108, 699–707.

    Google Scholar 

  • White, A. F., & Blum, A. E. (1995). Effects of climate on chemical weathering in watersheds. Geochimica Et Cosmochimica Acta, 59, 1729–1747.

    Article  CAS  ADS  Google Scholar 

  • Yousefifard, M., Ayoubi, S., Jalalian, A., Khademi, H., & Makkizadeh, M. A. (2012). Mass balance of major elements in relation to weathering in soils developed on igneous rocks in a semiarid region, northwestern Iran. Journal Mountain Science, 9, 41–58.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Director, Wadia Institute of Himalayan Geology for according permission to carry out a geochemical analysis. The X-ray diffraction analysis was done at the Indian Institute of Technology, Banaras Hindu University and for that, we are grateful to the authorities of the Institute. SK is grateful to the authorities of the Banaras Hindu University for sanctioning a DST PURSE fellowship to him. Prof. Abhijit Basu is thanked for reading an earlier version of this manuscript and Prof. D. R. Patnaik is thanked for reading the earlier version of this manuscript. The authors are thankful to the journal reviewers for suggesting modifications.

Funding

Department of Science and Technology, Ministry of Science and Technology, India, PURSE Grant no. 1.

Author information

Authors and Affiliations

Authors

Contributions

SK carried out fieldwork, analyzed the samples and performed interpretations and writing. BPS conceptualized the idea, carried out fieldwork and performed writing and editing. PM performed interpretation and editing. AP performed editing and preparation of the final version of the manuscript.

Corresponding author

Correspondence to B. P. Singh.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Communicated by Maria Virginia Alves Martins.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanhaiya, S., Singh, B.P., Mittal, P. et al. Regolith profiles developed from a granitic parent rock in a sub-humid climate: implications for pedogenesis and chemical mobility of elements. J. Sediment. Environ. 9, 63–79 (2024). https://doi.org/10.1007/s43217-023-00157-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43217-023-00157-3

Keywords

Navigation