Skip to main content
Log in

Petrography and geochemistry of Palaeogene sandstones of Geku Formation, Yinkiong Group, Arunachal Pradesh, NE India: implications on provenance and tectonic setting

  • Original Article
  • Published:
Journal of Sedimentary Environments Aims and scope Submit manuscript

Abstract

Detrital mineralogy and geochemical (major element oxides) approach, with the support of heavy mineral and clay mineralogical study, the siliciclastic rocks of Geku Formation of Yinkiong Group, Eastern Himalaya have been studied to understand their compositional variations, provenance of sediments, and to decipher the tectonic settings. Sandstones are quartz-dominated, with feldspar and rock fragments in a modal average ratio of Q79F10L10, as shown in the petrographic examination. Litharenite, wacke, and Fe-sand types of sandstone have been identified using geochemical approaches. Tectonic discriminant diagrams based on petrographic observations and major elements oxides have inferred that the studied sandstones were deposited in a passive continental setting, and sediments were derived from igneous, sedimentary, and metamorphic sources, i.e., plutonic (intermediate to mafic), quartzose sedimentary and gneissic provenance. The Himalayan affinity rocks in the northern part of the basin, which include mafic igneous sources such as Abor volcanics, are the potential source. The palaeoweathering indices have shown that the sediments were derived by moderate-to-intense chemical weathering and deposited nearby to the source without extensive recycling. The SiO2/Al2O3 and index of chemical variability (ICV) have indicated that the rocks are not very mature in terms of composition, and that recycling is moderate to low. The Geku Formation was formed by uplifted Himalayan orogeny rocks deposited in a fore-arc basin during the India–Asia collision.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Acharyya, S. K. (1998). Thrust tectonics and evolution of domes and the syntaxis in Eastern Himalaya, India. Journal of Nepal Geological Society, 18, 1–17.

    Article  Google Scholar 

  • Adekola, S. A., Akinlua, A., Ajayi, T. R., Adesiyan, T. A., & Ige, D. O. (2018). Geochemistry, heavy mineral and sedimentological analyses of potential reservoir sand samples from Kolmani River-1 well, Northern Benue Trough, Nigeria. African Journal of Science, Technology, Innovation and Development, 10(3), 299–310.

    Article  Google Scholar 

  • Ahmad, F., Amir, M., Quasim, M. A., Absar, N., & Ahmad, A. H. M. (2022). Petrography and geochemistry of the Middle Jurassic Fort Member Sandstone, Jaisalmer Formation, Western India: Implications for weathering, provenance and tectonic setting. Geological Journal, 57(5), 1741–1758.

    Article  Google Scholar 

  • Ahmad, F., Quasim, M. A., & Ahmad, A. H. M. (2020). Lithofacies characteristics and depositional environment interpretations of the Middle Jurassic Fort Member rocks, Jaisalmer Formation, Western Rajasthan, India. Journal of Sedimentary Environments, 5, 355–373.

    Article  Google Scholar 

  • Ahmad, F., Quasim, M. A., Ahmad, A. H. M., Ghaznavi, A. A., Khan, Z., & Albaroot, M. (2019). Factors influencing detrital mineralogy and tectono-provenance of fort member Sandstone, Jaisalmer formation, Western Rajasthan, India. Journal of the Geological Society of India, 93, 392–398.

    Article  Google Scholar 

  • Akinlua, A., Ngola, A., Fadipe, O. A., & Adekola, S. A. (2016). Petrography and geochemistry of sandstone samples of Vischkuil formation, Karoo Supergroup, South Africa. Journal of Petroleum Exploration and Production Technology, 6, 159–167. https://doi.org/10.1007/s13202-015-0199-1

    Article  Google Scholar 

  • Armstrong-Altrin, J. S., Nagarajan, R., Lee, Y. I., & Kasper-Zubillaga, J. J. (2014). Geochemistry of sands along the San Nicolas and San Carlos beaches, Gulf of California, Mexico: Implication for provenance. Turkish Journal of Earth Sciences, 23, 533–558.

    Article  Google Scholar 

  • Armstrong-Altrin, J. S., Nagarajan, R., Madhavaraju, J., Rosalez-Hoz, L., Lee, Y. I., Balaram, V., Cruz-Martinez, A., & Avila-Ramirez, G. (2013). Geochemistry of the Jurassic and Upper Cretaceous shales from the Molango region, Hidalgo, Eastern Mexico: Implications of source-area weathering, provenance, and tectonic setting. Comptes Rendus Geoscience, 345, 185–202.

    Article  Google Scholar 

  • Baral, U., Lin, D., Goswami, T. K., Sarma, M., Qasim, M., & Bezbaruah, D. (2019). Detrital zircon U-Pb geochronology of a Cenozoic foreland basin in Northeast India: Implications for zircon provenance during the collision of the Indian-Asian Plates. Terra Nova, 31(1), 18–27.

    Article  Google Scholar 

  • Basu, A., Young, S. W., Suttner, L. J., James, W. C., & Mack, H. G. (1975). Reevaluation of the use of undulatory extinction and polycrystallinity in detrital quartz for provenance interpretation. Journal of Sedimentary Petrology, 45(4), 873–882.

    Google Scholar 

  • Bhalla, J. K., Bishui, P. K., & Mathur, A. K. (1994). Geochronology and geochemistry of some granitoids of Kameng and Subansiri districts Arunachal Pradesh. Ind. Minerals, 48, 61–76.

    Google Scholar 

  • Bhalla, J. K., Srimal, N., & Bishui, P. K. (1990). Isotopic study of Mishmi Complex, Arunachal Pradesh NE Himalaya. Records of the Geological Survey of India, 123(2), 20–21.

    Google Scholar 

  • Bhandari, L. L., Fuloria, R. C., & Sastry, V. V. (1974). Stratigraphy of Assam Valley, India. American Association Petroleum Geology Bulletin, 57(4), 642–654.

    Google Scholar 

  • Bhatia, M. R. (1983). Plate tectonics and geochemical composition of sandstones. Journal of Geology, 91, 611–627.

    Article  Google Scholar 

  • Bhattacharjee, J., Ghosh, K. K., & Bhattacharya, B. (2017). Petrography and geochemistry of sandstone–mudstone from Barakar Formation (early Permian), Raniganj Basin, India: Implications for provenance, weathering and marine depositional conditions during Lower Gondwana sedimentation. Geological Journal. https://doi.org/10.1002/gj.2946

    Article  Google Scholar 

  • Burg, J. P., Davy, P., Oberli, F., Seward, D., Diao, Z., & Meir, M. (1997). Exhumation during crustal folding in the Namche-Barwa syntaxis. Terra Nova, 9, 53–56.

    Article  Google Scholar 

  • Chutia, A., Taye, C. D., Daimari, J., & Chutia, D. (2020). Petrography and clay mineralogical study of the Siwalik Group of rocks exposed along Pasighat-Mariyang road section, East Siang District, Arunachal Pradesh, Northeast India. Journal of Geological Society of India, 95(3), 263–272.

    Article  Google Scholar 

  • Chutia, A., Taye, C. D., Nath, D., & Chutia, D. (2019). Provenance of the Yinkiong Group exposed along Pasighat-Mariyang road section, East Siang District, Arunachal Pradesh: A petrographic, heavy mineral and clay mineralogical approach. Indian Journal of Geoscience, 73(4), 253–264.

    Google Scholar 

  • Cox, R., Lowe, D. R., & Cullers, R. L. (1995). The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States. Geochimca Et Cosmochimica Acta, 59(14), 2919–2940.

    Article  Google Scholar 

  • Crook, K. A. W. (1974). Lithogenesis and geotectonics: the significance of compositional variation in flysch arenites (graywackes). In R. H. Jr Dott & R. H. Shaver (Eds.), Modern and ancient geosynclinals sedimentation (Vol. 19, pp. 304–310). Society for Sedimentary Geology.

    Chapter  Google Scholar 

  • Cullers, R. L. (2000). The geochemistry of shales, siltstones and sandstones of Pennsylvanian-Permian age, Colorado, USA: Implications for provenance and metamorphic studies. Lithos, 51, 181–203.

    Article  Google Scholar 

  • Cullers, R. L., & Podkovyrov, V. N. (2000). Geochemistry of the Mesoproterozoic Lakhanda shale in southeastern Yakutia, Russia: Implications for mineralogical and provenance control, and recycling. Precambrian Research, 104, 77–93.

    Article  Google Scholar 

  • Deer, W. A., Howie, R. A., & Zussman, J. (1997). Rock Forming Minerals: Orthosilicates, 1A. The Geological Society.

    Google Scholar 

  • Dickinson, W. R. (1970). Interpreting detrital modes of greywacke and arkose. Journal of Sedimentary Petrology, 40, 695–707.

    Google Scholar 

  • Dickinson, W. R. (1985). Interpreting provenance relations from detrital modes of sandstones. In G. G. Zuffa (Ed.), Provenance of Arenites: (NATO ASI Series (Vol. 148, pp. 333–361). Springer.

    Chapter  Google Scholar 

  • Dickinson, W. R., Beard, L. S., Brakenridge, G. R., Erjavec, J. L., Ferguson, R. C., Inman, K. F., Knepp, R. A., Lindberg, F. A., & Ryberg, P. T. (1983). Provenance of North American Phanerozoic Sandstones in Relation to Tectonic Setting. Geological Society of America Bulletin, 94(2), 222–235.

    Article  Google Scholar 

  • Dickinson, W. R., & Suczek, C. A. (1979). Plate tectonics and sandstone compositions. AAPG Bulletin., 63, 2164–2182.

    Google Scholar 

  • Ehrmann, W., Schmiedl, G., Hamann, Y., Kuhnt, T., Hemleben, C., & Siebel, W. (2007). Clay minerals in late glacial and Holocene sediments of the northern and southern Aegean Sea. Palaeogeography, Palaeoclimatology, Palaeoecology, 249, 36–57.

    Article  Google Scholar 

  • Fedo, C. M., Nesbitt, H. W., & Young, G. M. (1995). Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for palaeoweathering conditions and provenance. Geology, 23(10), 921–924.

    Article  Google Scholar 

  • Gazzi, P. (1966). Le Arenarie del Flysch Sopracretaceo dell’ Appennino Modenese: Correlazionicon il Flysch di Monghidoro. Mineralogica Et Petrographica Acta, 12, 69–97.

    Google Scholar 

  • Geological Survey of India. (2010). Geology and mineral resources of arunachal pradesh, geological survey of India. Arunachal Pradesh. Miscellaneous Publication, 30(IV), 1–60.

    Google Scholar 

  • Geological Survey of India. (2013). News, North Eastern Region. Geological Survey of India, 24(1), 19.

    Google Scholar 

  • Ghaznavi, A. A., Khan, I., Quasim, M. A., & Ahmad, A. H. M. (2018). Provenance, tectonic setting, source weathering and palaeoenvironmental implications of Middle-Upper Jurassic rocks of Ler dome, Kachchh, western India: Inferences from petrography and geochemistry. Chemie Der Erde- Geochemistry, 78(3), 356–371.

    Article  Google Scholar 

  • Gururajan, N. S., & Choudhuri, B. K. (2003). Geology and tectonic history of the Lohit valley, Eastern Arunachal Pradesh, India. Journal of Asian Earth Sciences, 21, 731–741.

    Article  Google Scholar 

  • Harnois, L. (1988). The CIW index: a new chemical index of weathering. Sedimentary Geology, 55, 319–322.

    Article  Google Scholar 

  • Herron, M. M. (1988). Geochemical classification of terrigenous sands and shales from core or log data. Journal of Sedimentary Petrology, 58, 820–829.

    Google Scholar 

  • Hou, Q., Mou, C., Han, Z., Wang, Q., Tan, Z., & Ge, X. (2019). Petrography and geochemistry of the Lower Silurian sandstones from the Angzanggou Formation in the North Qilian Belt, China: Implications for provenance, weathering and tectonic setting. Geological Magazine. https://doi.org/10.1017/S0016756819000931

    Article  Google Scholar 

  • Hu, J. J., Qi, L., Fu, N. Q., & Yu, J. Y. (2015). Geochemistry characteristics of the Low Permian sedimentary rocks from central uplift zone, Qiangtang Basin, Tibet: Insights into source-area weathering, provenance, recycling, and tectonic setting. Arabian Journal of Geosciences, 8, 5373–5388.

    Article  Google Scholar 

  • Ingersoll, R. V., Bullard, T. F., Ford, R. L., Grimm, J. P., Pickle, J. D., & Sares, S. W. (1984). The effect of grain size on detrital modes: A test of the Gazzi-Dickinson point-counting method. Journal of Sedimentary Petrology, 45, 103–116.

    Google Scholar 

  • Ingersoll, R. V., & Suczek, C. A. (1979). Petrology and provenance of Neogene sand from Nicobar and Bangal Fans, DSDP sites 211 and 218. Journal of Sedimentary Petrology, 49, 1217–1228.

    Google Scholar 

  • Jafarzadeh, M., & Hosseini-Barzi, M. (2008). Petrography and geochemistry of Ahwaz Sandstone Member of Asmari Formation, Zagros, Iran: Implications on provenance and tectonic setting. Revista Mexicana De Ciencias Geologicas, 25(2), 247–260.

    Google Scholar 

  • Jain, K. P., & Dutta, S. K. (1978). Lower tertiary dinoflagellates, spores and pollen Grains from Siang District, Arunachal Pradesh. Journal of the Palaeontological Society of India, 21, 106–111.

    Google Scholar 

  • Khan, S., Ahmad, A. H. M., Alam, M. M., & Quasim, A. (2016). Petrographical and geochemical signatures of Jurassic rocks of Chari Formation, Kachchh, Gujarat India. Chinese Journal of Geochemistry, 35(2), 184–202.

    Google Scholar 

  • Kumar, G. (1997). Geology of Arunachal Pradesh. Geological Society of India.

    Google Scholar 

  • McLennan, S. M. (1989). Rare earth elements in sedimentary rocks: Influence of provenance and sedimentary processes. Reviews in Mineralogy, 21, 169–200.

    Google Scholar 

  • McLennan, S. M. (1993a). Weathering and global denudation. The Journal of Geology, 101, 295–303.

    Article  Google Scholar 

  • McLennan, S. M., Hemming, S., McDaniel, D. K., & Hanson, G. N. (1993b). Geochemical approaches to sedimentation, provenance, and tectonics. In M. J. Johnson & A. Basu (Eds.), Processes controlling the composition of clastic sediments (special paper) (Vol. 284, pp. 21–40). Geological Society of America.

    Chapter  Google Scholar 

  • Millot, G. (1949). Relations entre la constitution. genese des roches sedimentaries argileuses et al. Nancy, Ecole Nationale Supérieure De Géologie Appliquée Et De Prospection Miniére., 2, 1–352.

    Google Scholar 

  • Milner, H. B. (1962). Sedimentary PETROGRAPHY (4th ed.). McMillan.

    Google Scholar 

  • Mudoi, N. M., Gogoi, B., & Dehingia, P. (2021). Sandstone geochemistry of Dalbuing formation of Yinkiong Group, Arunachal Pradesh, NE India: Implications for provenance, paleoweathering and tectonic settings. Journal of Geological Society of India, 97(3), 297–307.

    Article  Google Scholar 

  • Nagarajan, R., John, S., Armstrong-Altrin, J. S., & Franz, L. (2015). Provenance and tectonic setting of Miocene siliciclastic sediments, Sibuti Formation, Northwestern Borneo. Arabian Journal of Geosciences, 8, 8549–8565.

    Article  Google Scholar 

  • Nesbitt, H. W., Fedo, C. M., & Young, G. M. (1997). Quartz and feldspar stability, steady and non-steady-state weathering, and petrogenesis of siliciclastic sands and muds. Journal of Geology, 105, 173–191.

    Article  Google Scholar 

  • Nesbitt, H. W., & Young, G. M. (1982). Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299, 715–717.

    Article  Google Scholar 

  • Nesbitt, H. W., & Young, G. M. (1984). Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochimica Et Cosmochimica Acta, 48, 1523–1534.

    Article  Google Scholar 

  • Nesbitt, H. W., & Young, G. M. (1989). Formation and diagenesis of weathering profiles. Journal of Geology, 97, 129–147.

    Article  Google Scholar 

  • Nicholas, G. (2009). Sedimentology and stratigraphy (2nd ed.). Wiley Blackwell.

    Google Scholar 

  • Periasamy, V., & Venkateshwarlu, M. (2017). Petrography and geochemistry of Jurassic sandstones from the Jhuran Formation of Jara dome, Kachchh basin, India: Implications for provenance and tectonic setting. Journal of Earth System Science, 126(44), 1–20. https://doi.org/10.1007/s12040-017-0822-2

    Article  Google Scholar 

  • Pettijohn, F. J., Potter, P. E., & Siever, R. (1972). Sand and sandstone: New York. Springer-Verlag.

    Google Scholar 

  • Prothero, D. R., & Schwab, F. (2014). Sedimentary geology: An introduction to sedimentary rocks and stratigraphy (3rd ed.). Freeman.

    Google Scholar 

  • Quasim, M. A., Ahmad, A. H. M., & Ghosh, S. K. (2017a). Depositional environment and tectono-provenance of Upper Kaimur Group sandstones, Son Valley Central India. Arabian Journal of Geosciences, 10, 4.

    Article  Google Scholar 

  • Quasim, M. A., Khan, I., & Ahmad, A. H. M. (2017b). Integrated petrographic, mineralogical, and geochemical study of the Upper Kaimur Group of rocks, Son Valley, India: Implications for provenance, source area weathering and tectonic setting. Journal of the Geological Society of India, 90, 467–484.

    Article  Google Scholar 

  • Ratcliffe, K. T., Morton, A. C., Ritcey, D. H., & Evenchick, C. A. (2007). Whole-rock geochemistry and heavy mineral analysis as petroleum exploration tools in the Bowser and Sustut basins, British Columbia, Canada. Bulletin of Canadian Petroleum Geology, 55, 320–336.

    Article  Google Scholar 

  • Roaldest, E. (1978). Mineralogical and chemical changes during weathering, transportation and sedimentation in different environments with particular references to the distribution of Ytrium and lanthanide elements (Ph.D. Thesis, Geological Institute, University of Oslo, Norway).

  • Robert, C., & Chamely, H. (1987). Cenozoic evaluation of continental humidity and paleoenvironment, deduced from the kaolinite content of oceanic sediments. Paleogeography, Paleoclimatology, Paleoceanography, 60, 171–187.

    Article  Google Scholar 

  • Robert, C., & Chamely, H. (1991). Development of early Eocene warm climates, as inferred from clay mineral variations in oceanic sediments. Palaeogeography, Palaeoclimatology, Palaeoecology, 89, 315–332.

    Article  Google Scholar 

  • Roser, B. P., Cooper, R. A., Nathan, S. A., & Tulloch, A. J. (1996). Reconnaissance sandstone geochemistry, provenance, and tectonic setting of the lower Paleozoic terrains of the West Coast and Nelson, New Zealand. New Zealand. Journal of Geology and Geophysics, 39, 1–16.

    Article  Google Scholar 

  • Roser, B. P., & Korsch, R. J. (1986). Determination of tectonic setting of sandstone-mudstone suites using SiO2 content and K2O/Na2O ratio. Journal of Geology, 94, 635–650.

    Article  Google Scholar 

  • Roser, B. P., & Korsch, R. J. (1988). Provenance signatures of sandstone–mudstone suites determined using discriminant function analysis of major-element data. Chemical Geology, 67, 119–139.

    Article  Google Scholar 

  • Schieber, J. (1992). A Combined petrographical-geochemical provenance study of the New land formation, Mid-Proterozoic of Montana. Geological Magazine, 129, 223–237.

    Article  Google Scholar 

  • Schwab, F. L. (1975). Framework mineralogy and chemical composition of continental margin type sandstone. Journal of Geology, 3, 487–490.

    Google Scholar 

  • Singh, S. (1984). A reappraisal of Yinkiong Formation with reference to Dalbuing area, East Siang district Arunachal Himalaya. Indian Minerals, 38(2), 34–38.

    Google Scholar 

  • Singh, S. (1993). Geology and tectonics of the eastern syntaxial bend, Arunachal Himalaya. Journal of Himalayan Geology., 4, 149–163.

    Google Scholar 

  • Singh, S., Burman, G., & Chowdhury, P. K. (1999). Lithostratigraphy of Yamme valley, East Siang district. In P. K. Verma (Ed.), Geological studies in the Eastern Himalayas (pp. 211–220). Pilgrim Books (pvt). Ltd.,.

    Google Scholar 

  • Singh, T., & Singh, P. (1983). Late Early Eocene larger foraminiferids from Siang district, Arunachal Pradesh, India and their geological Significance. Geoscience Journal, 4(2), 141–156.

    Google Scholar 

  • Sinha, N. K., Satsangi, P. P., & Mishra, U. K. (1986). Palaeontology of Permian and Eocene rocks of Siang Districts, Arunachal Pradesh. Records, Geological Survey of India, 114(4), 53–60.

    Google Scholar 

  • Sun, L., Gui, H., & Chen, S. (2013). Geochemistry of sandstones from the Neoproterozoic Jinshanzhai Formation in northern Anhui Province, China: Provenance, weathering and tectonic setting. Chinese Journal of Geochemistry, 32, 95–103.

    Article  Google Scholar 

  • Suttner, L. J., Basu, A., & Mach, G. H. (1981). Climate and origin of quartz arenites. Journal of Sedimentary Petrology., 51(4), 1235–1246.

    Google Scholar 

  • Suttner, L. J., & Dutta, P. K. (1986). Alluvial sandstone composition and paleoclimate. I. Framework mineralogy. Journal of Sedimentary Petrology., 56(3), 329–345.

    Google Scholar 

  • Taye, C. D. (2015). Petrography and Geochemistry of The Volcanic and Metavolcanic Rocks of Siang Valley, Arunachal Pradesh, India (Ph.D. Thesis, Dibrugarh University). INFLIBNET Centre, pp.34, http://hdl.handle.net/10603/212919. Accessed 10 May 2022.

  • Taye, C. D., & Bhattacharyya, P. (2017). Mineral chemistry and thermobarometry of the Mafic Igneous Rocks of Yamne Valley, Arunachal Pradesh India. Journal of Applied Geochemistry, 19(4), 400–415.

    Google Scholar 

  • Taylor, S. R., & McLennan, S. M. (1985). The continental crust: Its composition and evolution. Blackwell Science.

    Google Scholar 

  • Thiry, M. (2000). Paleoclimatic interpretation of clay minerals in marine deposits: An outlook from the continental origin. Earth Science Review, 49, 201–221.

    Article  Google Scholar 

  • Tortosa, A., Palomares, M., & Arribas, J. (1991). Quartz grains types in Holocene deposits from the Spanish Central System: some problems in provenance analysis. In A. C. Morton, S. P. Todd, & P. D. W. Haughton (Eds.), Developments in sedimentary provenance studies Special Publication (Vol. 57, pp. 47–54). Geological Society of London.

    Google Scholar 

  • Tripathi, C., Dungrakoti, B. D., & Ghosh, R. N. (1979). Note on discovery of Nummulites from Dihang Valley, Siang district Arunachal Pradesh. Indian Minerals, 33(1), 43–44.

    Google Scholar 

  • Tripathi, C., Gaur, R. K., & Singh, S. (1981a). A note on the occurrence of nummulites in East Siang district Arunachal Pradesh. Himalayan Geology., 35(1), 36–38.

    Google Scholar 

  • Tripathi, C., Gupta, P. D., Ghosh, R. N., Malhotra, G., & Dungrakoti, B. D. (1978). Geology of the area around Pasighat, Siang district, Arunachal Pradesh with special reference to its Eocene rocks. Himalayan Geology, 8(2), 1064–1079.

    Google Scholar 

  • Tripathi, C., Roy Chowdhury, J., & Das, D. P. (1981b). Discovery of tertiary plant fossils from Geku Formation of Dibang valley, Siang district Arunachal Pradesh. In A. K. Sinha (Ed.), Contemporary Geoscientific Researches in Himalaya (Vol. 1, pp. 225–230). Bishen Singh Mahendra Pal Singh Publishers.

    Google Scholar 

  • Tucker, M. (1988). Techniques in sedimentology. Blackwell Scientific Publications.

    Google Scholar 

  • Vandekamp, P. P., & Leake, B. E. (1985). Petrography and geochemistry of feldspathic and mafic sediments of the northeastern Pacific margin. Transactions of the Royal Society of Edinburgh Earth Sciences, 76, 411–449.

    Article  Google Scholar 

  • Verma, S. P., & Armstrong-Altrin, J. S. (2013). New multidimensional diagrams for tectonic discrimination of siliciclastic sediments and their application to Precambrian basins. Chemical Geology, 355, 117–180.

    Article  Google Scholar 

  • Wadia, D. N. (1931). The syntaxis of Northwest Himalaya: Its rocks, tectonics and orogeny. Records, Geological Survey of India., 6, 189–220.

    Google Scholar 

  • Wronkiewicz, D. J., & Condie, K. C. (1987). Geochemistry of Archean shales from the Witwatersrand Supergroup, South Africa: Source-area weathering and provenance. Geochimica Et Cosmochimica Acta, 51, 2401–2416.

    Article  Google Scholar 

  • Zand-Moghadam, H., Jafarzadeh, M., Moussavi-Harami, R., & Mahboubi, A. (2018). Petrography and Geochemistry of the Upper Jurassic Siliciclastic Rocks Equivalent to the Mozduran Gas Reservoir in the Eastern Kopet-Dagh Basin, NE Iran. Journal of Sciences, Islamic Republic of Iran, 29(2), 157–171.

    Google Scholar 

Download references

Acknowledgements

We extend our sincere gratitude to Cotton University for providing ample laboratory facilities to carry out the present work and Sophisticated Analytical Instrument Facility (SAIF), Department of Instrumentation & USIC, Gauhati University and Department of Chemistry, Gauhati University, Guwahati for providing their XRD and SEM lab facility. One of us is extremely grateful to DST-INSPIRE for the financial assistance in the form of INSPIRE Fellowship/2018/IF180616. We also gratefully acknowledge the anonymous reviewers and handling editor for their constructive and helpful comments, which helped us to polish the manuscript.

Funding

Author Anannya Bordoloi has received financial support from DST-INSPIRE for pursuing Ph.D having order number INSPIRE Fellowship/2018/IF180616.

Author information

Authors and Affiliations

Authors

Contributions

All the authors involved in the geological field study. This manuscript was drafted by AB and edited, designed and coordinated by CDT. AC supervised the experiment and analysis of the samples and interpretation of this research. MPG assists the analysis and participate in the research. The papers were read and approved by all the authors.

Corresponding author

Correspondence to Chaitra Dhar Taye.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests in this manuscript.

Ethical approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Communicated by M. V. Alves Martins.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bordoloi, A., Chutia, A., Taye, C.D. et al. Petrography and geochemistry of Palaeogene sandstones of Geku Formation, Yinkiong Group, Arunachal Pradesh, NE India: implications on provenance and tectonic setting. J. Sediment. Environ. 7, 691–709 (2022). https://doi.org/10.1007/s43217-022-00116-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43217-022-00116-4

Keywords

Navigation