Skip to main content
Log in

Influence of low-temperature fluids and post-depositional changes in the siliceous–pelagic sediments of the Central Indian Ocean Basin

  • Original Article
  • Published:
Journal of Sedimentary Environments Aims and scope Submit manuscript

Abstract

In this paper, we discuss the possible reasons for the mass disappearance of radiolarians, hiatus in sedimentation, low-temperature alteration of sediments, and formation of palagonite and phillipsites in the Central Indian Ocean Basin (CIOB). A prominent change in the coarse fraction components was observed in two 5 m long sediment cores retrieved from a water depth of 5000 m near the 79°E fracture in the basin. One core was lifted from the boundary of siliceous-red clay and the other from red clay sediment. In both cores, a distinct antithetical relation exists between occurrence of radiolarians and palagonite grains i.e., in certain down-core sections where radiolarians are present, palagonite grains are absent and vice-versa. This discontinuity in the deposition/dissolution of radiolarians signifies post-depositional variations in the sediment cores and this is confirmed by down-core compositional fluctuations. This study gives a first-hand understanding of the inverse relation between extensive palagonite formation and large-scale absence of radiolarians in the CIOB. The abundance of Ca-poor and K > Na phillipsite crystals in the palagonite-rich zone attest to different stages of palagonitisation of the sediments. The non-preservation of radiolarians in both cores, and elsewhere in the basin, could be due to intra-basinal volcanism and the influence of low-temperature fluids through fracture zones and fissures that are present in the vicinity. The coupled effect of these two processes perhaps led to alteration of the core sediments and the observed changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Amonkar, A., Iyer, S. D., & Babu, E. V. S. S. K. (2020). Extending the limit of widespread dispersed Toba volcanic glass shards and identification of new in-situ volcanic events in the Central Indian Ocean Basin. Journal of Earth System Science. https://doi.org/10.1007/s12040-020-01429-6

    Article  Google Scholar 

  • Amonkar, A. (2020). Volcanogenic and hydrothermal evidence from the Central Indian Ocean Basin since 60 Ma. Unpublished. Ph.D. Thesis, Goa University, India

  • Amonkar, A., Iyer, S. D., Babu, E. V. S. S. K., Sardar, A., Shailajha, N., & Manju, S. (2021). Fluid-driven hydrovolcanic activity along fracture zones and near seamounts: Evidence from deep-sea Fe-rich spherules. Acta Geologica Sinica. https://doi.org/10.1111/1755-6724.14697

    Article  Google Scholar 

  • Andrews, A. J. (1977). Low temperature fluid alteration of oceanic layer 2 basalts, DSDP Leg 37. Canadian Journal of Earth Science, 14, 911–926.

    Article  Google Scholar 

  • Arrhenius, G. (1963). Pelagic sediments. In M. N. Hill (Ed.), The Sea (Vol. 3, pp. 655–727). Wiley.

    Google Scholar 

  • Banakar, V. K., Gupta, S. M., & Padmavathi, V. K. (1991). Abyssal sediment erosion in the Central Indian Basin: Evidence from radiochemical & radiolarian studies. Marine Geology, 96, 167–173.

    Article  Google Scholar 

  • Banerjee, R., & Iyer, S. D. (1991). Biogenic influence on the growth of ferro-manganese micronodules from the Central Indian Basin. Marine Geology, 97, 413–422.

    Article  Google Scholar 

  • Baragar, W. R. A., Plant, A. G., Pringle, G. J., & Schau, M. (1977). Petrology of altered selected units of Mid Atlantic Ridge basalts sampled from sites 332 and 335, DSDP. Canadian Journal of Earth Science, 14, 837–874.

    Article  Google Scholar 

  • Bass, M. N., Moberly, R., Rhodes, J. M., Chiyu, S., & Church, S. E. (1973). Volcanic rocks cored in the Central Pacific, Leg 17, Deep Sea Drilling Project. In Winterer, E.L., Ewing, J.I., et al. (eds.), Initial Reports of the Deep Sea Drilling Project. Washington, DC, US, Government Printing Office, 17, 429–503

  • Bonatti, E. (1967). Mechanisms of deep-sea volcanism in the South Pacific. In: Researches in Geochemistry. 2, edited by P. Abelson, 453–491

  • Bonatti, E. (1963). Zeolites in Pacific pelagic sediments. Transactions of New York Academy of Sciences, 25, 938–948.

    Article  Google Scholar 

  • Bonatti, E. (1965). Palagonite, hyaloclastite, and alteration of volcanic glass in the ocean. Bulletin of Volcanology, 28, 257–269.

    Article  Google Scholar 

  • Borole, D. V. (1993). Late Pleistocene sedimentation: A case study of the central Indian Ocean Basin. Deep Sea Research Part I: Oceanographic Research Papers, 40, 761–775.

  • Boulegue, J., & Mariotti, A. (1990). Carbonate cement and fluid circulation in intraplate deformation. In: Cochran, J.R., Stow, D.A.V., et al. (Eds.), Proceedings Ocean Drilling Program, Scientific Results. College Station, TX (Ocean Drilling Program), 116, 135–139

  • Bramlette, M. N. (1946). Monterey formation of California and origin of its siliceous rocks. U.S. Geological Survey Professional Paper, 212, 53

  • Bunsen, R. (1847). Beitrag zur Kenntnis des isländischen Tuffgebirges. Ann Chem Pharm, 61, 265–279.

    Article  Google Scholar 

  • Cavalazzi, B., Westall, F., Cady, S. L., Barbieri, R., & Foucher, F. (2011). Potential fossil endoliths in vesicular pillow basalt, Coral Patch Seamount, eastern North Atlantic Ocean. Astrobiology, 11, 619–632.

    Article  Google Scholar 

  • Chamley, H. (1997). Clay mineral sedimentation in the ocean. In: Soils and Sediments (eds) Paquet H and Clauer N, Springer, 369

  • Chester, R., & Jickells, T.D. (2012). The Transport of Material to the Oceans: The Fluvial Pathway. In: Marine Geochemistry (Google eBook). John Wiley and Sons

  • Cockram, D. R., Haider, Z. & Roberts, G. J. (1969). The diffusion of “water” in soda-lime glass within and near the transformation range. Physics and Chemistry of Glasses, 10, 18–22.

  • Das, P., Iyer, S. D., & Kodagali, V. N. (2007). Morphological characteristics and emplacement mechanism of the seamounts in the Central Indian Ocean Basin. Tectonophysics, 443, 1–18.

    Article  Google Scholar 

  • Das, P., Iyer, S. D., Kodagali, V. N., & Krishna., K. S. . (2005). Distribution and origin of seamounts in the Central Indian Ocean Basin. Marine Geodesy, 28, 259–269.

    Article  Google Scholar 

  • Dekov, V. M., Cuadros, J., Kamenov, G. D., Weiss, D., Arnold, T., Basak, C., & Rochette, P. (2010). Metalliferous sediments from the H.M.S. Challenger voyage (1872–1876). Geochimica Et Cosmochimica Acta, 74, 5019–5038.

    Article  Google Scholar 

  • Furnes, H. (1978). Element mobility during palagonitization of a sub-glacial hyaloclastite in Iceland. Chemical Geology, 22, 249–264.

    Article  Google Scholar 

  • Gupta, S. M. (1988). Radiolarian zonation and volcanic ash-layers in two sediment cores from the Central Indian Basin. Journal of Palaeontological Society of India, 33, 59–71.

    Google Scholar 

  • Gupta, S. M. (1996). Quantitative radiolarian assemblages in the surface sediments from the central Indian Ocean and their paleo monsoonal significances. Journal of Geological Society of India, 47, 339–354.

    Google Scholar 

  • Gupta, S. M. (2009). Radiolarian abundance - a monsoon proxy responding to the Earth’s orbital forcing: Inferences on the mid-Brunhes climate shift. Earth Science, India, 2, 1–20.

    Google Scholar 

  • Gupta, S. M., & Jauhari, P. (1994). Radiolarian abundance and geochemistry of the surface-sediments from the Central Indian Ocean Basin: Inferences to Antarctic Bottom water current. Current Science, 66, 659–653.

    Google Scholar 

  • Honnorez, J. (1981). The aging of the oceanic crust. In C. Emiliani (Ed.), The Sea (Vol. 7, pp. 525–587). Wiley.

    Google Scholar 

  • Huang, T. C., Fillon, R. H., Watkins, N. D., & Shaw, D. M. (1974). Volcanism and siliceous microfauna ‘diversity’ in the southwest Pacific during the Pleistocene period. Deep-Sea Research, 21, 377–384.

    Google Scholar 

  • Iyer, S. D., Amonkar, A., & Das., P. (2018a). Genesis of Central Indian Ocean Basin Seamounts: Morphological, Petrological, Geochemical Evidence. International Journal of Earth Sciences. https://doi.org/10.1007/s00531-018-1612-z.

  • Iyer, S. D. (1991). Comparison of internal features and microchemistry of ferromanganese crusts from the Central Indian Basin. Geo-Marine Letters, 11, 44–50.

    Article  Google Scholar 

  • Iyer, S. D. (1999). Alteration of basaltic glasses from the Central Indian Ocean. Journal of Geological Society of India, 54, 609–620.

    Google Scholar 

  • Iyer, S. D. (2005). Evidences for incipient hydrothermal event(s) in the Central Indian Basin: A review. Acta Geologica Sinica, 79, 77–86.

    Article  Google Scholar 

  • Iyer, S. D., Fernandes, G. Q., & Mahender, K. (2012). Coarse fraction components in a red-clay sediment core, Central Indian Ocean Basin: Their occurrence and significance. Journal of Indian Association of Sedimentologists, 31, 123–135.

    Google Scholar 

  • Iyer, S. D., Gupta, S. M., Charan, S. N., & Mills, O. P. (1999b). Volcanogenic hydrothermal iron-rich materials from the southern part of the Central Indian Ocean Basin. Marine Geology, 158, 15–25.

    Article  Google Scholar 

  • Iyer, S. D., Mascarenhas-Pereira, M. B. L., & Nath, B. N. (2007a). Native aluminium (spherules and particles) in the Central Indian Basin sediments: Implications on the occurrence of hydrothermal events. Marine Geology, 240, 177–184.

    Article  Google Scholar 

  • Iyer, S. D., Mukhopadhyay, R., & Popko, D. C. (1999a). Ferrobasalts from the Central Indian Ocean Basin. Geo-Marine Letters, 18, 297–304.

    Article  Google Scholar 

  • Iyer, S. D., Pinto, S. M., & Sardar, A. A. (2018b). Characteristics and genesis of phillipsite grains in a sediment core from the Central Indian Ocean Basin. Indian Journal of Geo-Marine Sciences, 47, 1121–1131.

    Google Scholar 

  • Iyer, S. D., Prasad, S. M., Gupta, S. M., & Charan, S. N. (1997b). Evidence for recent hydrothermal activity in the Central Indian Ocean Basin. Deep-Sea Research I, 44, 1167–1184.

    Article  Google Scholar 

  • Iyer, S. D., Prasad, S. M., Gupta, S. M., Charan, S. N., & Mukherjee, A. D. (1997a). Hydrovolcanic activity in the Central Indian Ocean Basin. Does nature mimic laboratory experiments? Journal of Volcanism and Geothermal Research, 78, 209–220.

    Article  Google Scholar 

  • Iyer, S. D., & Sudhakar, M. (1993). A new report on the occurrence of zeolites in the abyssal depths of the Central Indian Basin. Sedimentary Geology, 84, 169–178.

    Article  Google Scholar 

  • Iyer, S. D., Sudhakar, M., & Das, P. (2007b). Composition and genesis of zeolitic claystones from the Central Indian Ocean Basin. Acta Geologica Sinica, 81, 756–770.

    Article  Google Scholar 

  • Kalangutkar, N. G., Iyer, S. D., & Ilangovan, D. (2011). Physical properties, morphology, and petrological characteristics of pumices from the Central Indian Ocean Basin. Acta Geologica Sinica, 85, 826–839.

    Article  Google Scholar 

  • Kastner, M., 1981. Authigenic silicates in deep-sea sediments: formation and diagenesis. In: Emiliani, C. (Ed.), The Sea vol. 7, Wiley J. and Sons, New York 915–980

  • Kastner, M., & Stonecipher, S. A. (1978). Zeolites in pelagic sediments of the Atlantic, Pacific, and Indian Oceans. In L. B. Sand & F. A. Mumpton (Eds.), Natural Zeolites: Occurrences, Properties, and Uses (pp. 199–221). Pergamon.

    Google Scholar 

  • Khadge, N. H. (1998). Physical properties of a core from the Central Indian Basin. Journal of Indian Geophysical Union, 2, 1–6.

    Google Scholar 

  • Khadge, N. H., & Valsangkar, A. B. (2008). Geotechnical characteristics of siliceous sediments from the Central Indian Basin. Current Science, 12, 1570–1573.

    Google Scholar 

  • Kolla, V., & Biscaye, P. E. (1973). Deep-sea zeolites: Variations in space and time in sediments of the Indian Ocean. Marine Geology, 15, 11–17.

    Article  Google Scholar 

  • Kurenkon, I.I. (1972). Vozdejstvijevulkanizmanarecnujir fauna. Proroda (Moscow), 46

  • LeBas, M. J., Le Maitre, R. W., Streckeisen, A., & Zanettin, B. (1986). A chemical classification of volcanic rocks based on the total alkali-silica diagram. Journal of Petrology, 27, 745–750.

    Article  Google Scholar 

  • Lisitzin, A. P. (1996). Oceanic sedimentation, lithology & geochemistry (p. 400). American Geophysical Union.

    Book  Google Scholar 

  • Mascarenhas-Pereira, M. B. L., Nath, B. N., Borole, D. V., & Gupta, S. M. (2006). Nature, source and composition of volcanic ash in sediments from a fracture zone trace of Rodriguez Triple Junction in the Central Indian Basin. Marine Geology, 229, 79–90.

    Article  Google Scholar 

  • Matthews, D. H. (l971). Altered basalts from Swallow Bank, an abyssal hill in the N.E. Atlantic and from a nearby seamount. Phil. Trans. Roy. Soc. London, 268, 55l–572

  • Melson, W. G. (1973). Basaltic glasses from the Deep-sea Drilling Project. Chemical characteristics, composition of alteration products and fission track ‘ages’. EOS. Trans. Am. Geophysics Union, 54, 1011–1014.

    Google Scholar 

  • Moore, J. G. (1966). Rate of palagonitization of submarine basalt adjacent to Hawaii. U.S. Geological Survey Prof Paper 550-D, 163–171

  • Morgenstein, M. (1967). Authigenic cementation of scoriaceous deep-sea sediments west of the Society Ridge. Sedimentology, 9, l05–ll8

  • Mukhopadhyay, R., Ghosh, A. K., & Iyer, S. D. (2018). The Indian Ocean nodule field: Geology & Resource Potential. 2nd edition Elsevier Amsterdam, 413

  • Mukhopadhyay, R., Iyer, S. D., & Ghosh, A. K. (2002). The Indian Ocean nodule field: Petrotectonic evolution and ferromanganese deposits. Earth-Science Reviews, 60, 67–130.

    Article  Google Scholar 

  • Nath, B. N., Borole, D. V., Aldahan, A., Patil, S. K., Mascarenhas-Pereira, M. B. L., Possnert, G., Ericsson, T., Ramaswamy, V., & Gupta, S. M. (2008). 210Pb, 230Th, & 10Be in Central Indian Basin seamount sediments: Signatures of degassing and hydrothermal alteration of recent origin. Geophysical Research Letters. https://doi.org/10.1029/2008GL033849

    Article  Google Scholar 

  • Nath, B. N., Rao, V. P. C., & Becker, K. P. (1989). Geochemical evidence of terrigenous influence in deep-sea sediments upto 8o S in the Central Indian Basin. Marine Geology, 87, 301–313.

    Article  Google Scholar 

  • Nath, B. N., Sijinkumar, A. V., Borole, D. V., Gupta, S. M., Mergulhao, L. P., Mascarenhas-Pereira, M. B. L., Ramaswamy, V., Guptha, M. V. S., Possnert, G., Aldahan, A., Khadge, N. H., & Sharma, R. (2013). Record of carbonate preservation & the Mid-Brunhes climatic shift from a seamount top with low sedimentation rates in the Central Indian Basin. Boreas, 42, 762–778.

    Article  Google Scholar 

  • Okada, T. (1936). Report of the Oceanographic observation in the neighboring seas of a new volcanic island, Iwozima Sinto. Journal of Oceanography Kobe

  • Pattan, J. N., & Parthiban, G. (2007). Do manganese nodules grow or dissolve after burial? Results from the Central Indian Ocean Basin. Journal of Asian Earth Sciences, 30, 696–705.

    Article  Google Scholar 

  • Pattan, J. N., Shyam, P. M., & Babu, E. V. S. S. K. (2010). Correlation of the oldest Toba Tuff to sediments in the central Indian Ocean Basin. Journal of Earth System Science, 119, 531–539.

  • Pattan, J. N., & Parthiban, G. (2011). Geochemistry of ferromanganese nodule-sediment pairs from Central Indian Ocean Basin. Journal of Asian Earth Science, 40, 569–580.

    Article  Google Scholar 

  • Pattan, J. N., Parthiban, G., Amonkar, A., Shaikh, S., & Sankar, S. J. (2017). Geochemical trace and ultra-trace elements and their association in ferromanganese nodules from Central Indian Ocean Basin. Marine Georesources and Geotechnology. https://doi.org/10.1080/1064119X.2017.1297878

    Article  Google Scholar 

  • Peterson, M. N. A., & Griffin, J. J. (1964). Volcanism and clay minerals in the southeastern Pacific. Journal of Marine Resources, 22, 13–21.

    Google Scholar 

  • Prasad, M. S., Mahale, V. P., & Kodagali, V. N. (2007). New sites of Australasian microtektites in the central Indian Ocean: Implications for the location and size of source crater. Journal of Geophysical Research (oceans), 112, 1–11.

    Google Scholar 

  • Rex, R. W. (l967). Authigenic silicates formed from basaltic glass by more than 60 million years contact with seawater, Sylvania Guyot, Marshall Island. In: Bailey. S.W. (Ed.), Clays and Clay Minerals, Proceedings of 15th Conf., 195–203

  • Rhodes, J. M. (1996). Geochemical stratigraphy of lava flows sampled by the Hawaiian scientific drilling project. Journal of Geophysical Research, 101, 729–746.

  • Riedel, W. R. (1959). Siliceous organic remains in pelagic sediments. In: Silica in sediments, H. A. Ireland (ed), Society of Economic Paleontology and Mineralogy, Sp. Publ. 7, 80–91

  • Riley, J. P., & Chester, R. (1971). Introduction to Marine Chemistry. Academic Press.

    Google Scholar 

  • Sarma, N. S., Kiran, R., Rama Reddy, M., Iyer, S. D., Peketi, A., Borole, D. V., & Krishna, M. S. (2017). Hydrothermal alteration promotes humic acid formation in sediments: A case study of the Central Indian Ocean Basin. Journal of Geophysical Research (oceans), 123, 110–130.

    Article  Google Scholar 

  • Sarnthein, M. (1966). Sedimentologische profilrehenaus den Mitteltriadischen Karbonatgestern der Kalkalpannordlich und sudlich von Innsbruck. Bericht Des Naturwissen Chaflichme Dizinischen Vereins in Innsbruck, 54, 33–59.

    Google Scholar 

  • Scarfe, C. M., & Smith, D. G. W. (1977). Secondary minerals in some basaltic pillow lavas: A microprobe study. American Journal of Sciences, 276, 480–501.

    Google Scholar 

  • Sensarma, S., Gupta, S. M., Banerjee, R., & Mukhopadhyay, S. (2020). Change of lithofacies in marine sediment core from Quaternary to Pre-Quaternary: A case study from the Central Indian Ocean Basin. Journal of Earth System Sciences, 129, 54.

    Article  Google Scholar 

  • Singh, T., Kshirsagar, P. R., Das, A., Yadav, K., Mallik, S., Mascarenhas-Pereira, M. B. L., Thomas, T. R. A., Mamatha, S. S., Loka Bharathi, P. A., Khadge, N. H., Nath, B. N., Dhakephalkar, P. K., Iyer, S. D., Ray, D., Valsangkar, A. B., Garg, A., Prakash Babu, C., Waghole, R. J., Waghmare, S. S., … Paknikar, K. M. (2019). Implications of Microbial Thiosulfate Utilization in Red Clay Sediments of the Central Indian Basin: The Martin Analogy. Geochemistry, Geophysics, Geosystems, 20, 708–729. https://doi.org/10.1029/2018GC007640

    Article  Google Scholar 

  • Stroncik, N. A., & Schmincke, H. U. (2002). Palagonite – a review. International Journal of Earth Sciences, 91, 680–697.

    Article  Google Scholar 

  • Stroncik, N. A., & Schmincke, H.-U. (2001). The evolution of palagonite crystallisation, chemical changes, and element budget. Geochemical, Geophysics Geosystems, 2, 1–15.

    Google Scholar 

  • Thompson, G. (1991). Metamorphic and hydrothermal processes: basalt seawater interactions. In P. A. Floyd (Ed.), Oceanic Basalts (pp. 148–173). Glasgow: Blackie and Sons.

    Google Scholar 

Download references

Acknowledgements

We acknowledge the Director of CSIR-NIO, Goa for providing the facilities to carry out the study. This work forms a part of the doctoral thesis of AA. She is grateful to CSIR-Direct Senior Research Fellowship, India (Grant No. 31/26/(0306)/2018-EMR-I) and Project PMN-Survey (GAP 2175) at the CSIR-NIO, Goa where the work was carried out. We thank the captain, crew, and participants of the 22nd cruise of AA Sidorenko for help during the collection of the sediment cores. We are obliged to Dr. S.M. Gupta for discussions concerning the various aspects of radiolarians. We are grateful to Mr. V. Khedekar, S. Areef for assistance during SEM and EPMA analysis and to Mr. V Gaikwad for helping in the preparation of 2 figures. We sincerely appreciate the critical and helpful comments of the reviewer that helped to improve the manuscript and to Dr. Maria Virgínia Alves Martins (Editor-in-Chief) for encouragement to revise the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ankeeta Amonkar.

Ethics declarations

Conflict of interests

The authors declare that they have no known conflicting financial interests or personal relationships that could have appeared to influence the work reported in this paper. The authors declare the following financial interests/personal relationships which may be considered as potential competing interests.

Additional information

Communicated by M. V. Alves Martins

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amonkar, A., Iyer, S.D. Influence of low-temperature fluids and post-depositional changes in the siliceous–pelagic sediments of the Central Indian Ocean Basin. J. Sediment. Environ. 6, 603–620 (2021). https://doi.org/10.1007/s43217-021-00073-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43217-021-00073-4

Keywords

Navigation