Skip to main content
Log in

Extending the limit of widespread dispersed Toba volcanic glass shards and identification of new in-situ volcanic events in the Central Indian Ocean Basin

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

We report the widespread extent of Toba volcanic glass shards in the Central Indian Ocean Basin. Investigation of four sediment cores (7º–17ºS) revealed several shard-rich horizons (SRH) that provide the first detailed tephrochronology for volcanic glass shards in the CIOB. A comparative study of surface sediments floored with Youngest Toba Tuff (YTT), indicate that irrespective of the rate of sedimentation, YTT in the basin is restricted to a depth of <35 cm-bsf. We utilized microtektites (0.77 Ma), associated with the Oldest Toba Tuff (OTT) glass shards, as a proxy for age calculation of the SRH. The results are comparable with well-established ages derived from paleomagnetic and δ18O methods for the Leg 21 ODP Site 758. The other significant finding of this study includes the first report of Middle Toba Tuff (equivalent to Layer C) and Layer D that are present between YTT and OTT (Layer E) and also Layers G, H, h, I, J, K, L and M. All these layers correspond with those reported for ODP Site 758. Furthermore, two SRH between layers G and H show signatures of localized in-situ phreatomagmatic origin, suggesting that CIOB is apparently more active – tectonically and volcanically than it is presumed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Acharyya S K and Basu P K 1993 Toba ash on the Indian subcontinent and its implications for the correlation of late Pleistocene alluvium; Quat. Res. 40 10–19.

    Google Scholar 

  • Amonkar A and Iyer S D 2017 An account of silicic glass shards in the Central Indian Ocean Basin: Terrestrial and in-situ origin; (Abstract) OSICON-17 ESSO-NCESS, Thiruvananthapuram, Kerala, India.

    Google Scholar 

  • Banakar V K, Gupta S M and Padmavathi V K 1991 Abyssal sediment erosion in the Central Indian Basin: Evidence from radiochemical and radiolarian studies; Mar. Geol. 96 167–173.

    Google Scholar 

  • Banerjee B, Ahmad S M, Babu E V S S K, Padmakumari V M, Beja K S, Satyanarayanan M and Krishna A K 2019 Geochemical and isotopic study of southern Bay of Bengal sediments: Implications for provenance and paleoenvironment during the middle Miocene; Paleogeol. Palaeoclimatol. Palaeoecol. 514 156–167.

    Google Scholar 

  • Borole D V 1993 Late Pleistocene sedimentation: A case study of the central Indian Ocean Basin; Deep-Sea Res. 40 761–775.

  • Bühring C and Sarnthein M 2000 Toba ash layers in the South China Sea: Evidence of contrasting wind directions during eruption ca. 74 ka; Geology 28 275–278.

  • Chesner C A and Rose W I 1991 Stratigraphy of the Toba Tuffs and the evolution of the Toba Caldera Complex, Sumatra, Indonesia; Bull. Volcanol. 53 343–356.

    Google Scholar 

  • Chesner C A, Rose W I, Deino A, Drake R and Westgate J A 1991 Eruptive history of Earth’s largest Quaternary caldera (Toba, Indonesia) clarified; Geology 19 200–203.

    Google Scholar 

  • Chesner C A 1998 Petrogenesis of the Toba Tuffs, Sumatra, Indonesia; J. Petrol. 39 397–438.

    Google Scholar 

  • Clague D A, Davis A S and Dixon J E 2003 Submarine Strombolian eruptions on the Gorda mid-ocean ridge; Explosive Subaqueous Volcanism; Geophys. Monogr. Ser. 140 111–128.

    Google Scholar 

  • Clague D A, Paduan J B and Davis A S 2009 Widespread strombolian eruptions of mid-ocean ridge basalt; J. Volcanol. Geotherm. Res. 180 171–188.

    Google Scholar 

  • Costa A, Smith V C, Macedonio G and Matthews N E 2014 The magnitude and impact of the Youngest Toba Tuff super-eruption; Front. Earth Sci. 2 1–8.

    Google Scholar 

  • Das P, Iyer S D, Kodagali V N and Krishna K S 2005 Distribution and origin of seamounts in the Central Indian Ocean Basin; Mar. Geod. 28 259–269.

    Google Scholar 

  • Das P, Iyer S D and Kodagali V N 2007 Morphological characteristics and emplacement mechanism of the seamounts in the Central Indian Ocean Basin; Tectonophys. 443 1–18.

    Google Scholar 

  • de Lavergne C, Madec G, Roguet F, Holmes R M and McDougall T J 2017 Abyssal ocean overturning shaped by seafloor distribution; Nature 551 181–186.

    Google Scholar 

  • Dehn J, Farrel J W and Schmincke H-U 1991 Neogene tephrochronology from ODP Site 758 on Ninety-East Ridge: Indonesian arc volcanism of the past 5 Ma; Proceedings of Ocean Drilling Program Sci. Res. 121 273–295.

  • Diehl J F, Onstott T C, Chesner C A and Knight M D 1987 No short reversals of Brunhes age recorded in the Toba Tuffs, north Sumatra, Indonesia; Geophys. Res. Lett. 14 753–756.

    Google Scholar 

  • Fisher R V and Schmincke H-U 1984 Pyroclastic Rocks; Springer, 472p.

  • Gasparotto G, Spadafora G, Summa V and Tateo F 2000 Contribution of grain size and compositional data from the Bengal Fan sediment to the understanding of Toba volcanic event; Mar. Geol. 162 561–572.

    Google Scholar 

  • Gathorne-Hardy F J and Harcourt-Smith W E H 2003 The super-eruption of Toba, did it cause a human bottleneck?; J. Human Evol. 45 227–230.

    Google Scholar 

  • Gatti E, Mokhtar S, Talib K, Rashidi A, Gibbard P and Oppenheimer C 2012 Depositional processes of reworked tephra from the Late Pleistocene Younger Toba Tuff deposits in the Lenggong Valley, Malaysia; Quat. Res. 79 228–241.

    Google Scholar 

  • Glass B P and Koeberl C 2006 Australasian microtektites and associated impact ejecta in the South China Sea and the middle Pleistocene supereruption of Toba; Meteor. Planet. Sci. 41 305–326.

    Google Scholar 

  • Goldberg E D and Koide M 1963 Rates of sediment accumulation in the Indian Ocean; In: Earth Science And Meteoritics, pp. 90–102.

  • Gourlan A T, Meynadier L and Allegre C 2008 Tectonically driven changes in the Indian Ocean circulation over the last 25 Ma: Neodymium isotope evidence; Earth Planet. Sci. Lett. 267 353–364.

    Google Scholar 

  • Gupta S M 1988 Radiolarian zonation and volcanic ash-layers in two Quaternary sediment cores from the Central Indian Basin; J. Palaeontol. Soc. India 33 59–71.

    Google Scholar 

  • Gupta S M 1991 New ichthyoliths from ferromanganese crusts and nodules from the Central Indian Ocean Basin; Micropaleont. 37 125–147.

    Google Scholar 

  • Gupta S M 1996 Quantitative radiolarian assemblages in the surface sediments from the central Indian Ocean and their paleomonsoonal significances; J. Geol. Soc. India 47 339–354.

    Google Scholar 

  • Gupta S M 2009 Radiolarian abundance – a monsoon proxy responding to the Earth’s orbital forcing: Inferences on the mid-Brunhes climate shift; Earth Sci. India 2 1–20.

    Google Scholar 

  • Head J W I and Wilson L 2003 Deep submarine pyroclastic eruptions: Theory and predicted landforms and deposits; J. Volcanol. Geotherm. Res. 121 155–193.

    Google Scholar 

  • Helo C, Clague D A, Dingwell D B and Stix J 2013 High and highly variable cooling rates during pyroclastic eruptions on Axial Seamount, Juan de Fuca Ridge; J. Volcanol. Geotherm. Res. 253 54–64.

    Google Scholar 

  • Helo C, Clague D A and Stix J 2008 Pyroclastic eruptions from axial caldera, Juan de Fuca Ridge, NE Pacific Ocean; IOP Conf. Ser. 3 012005.

    Google Scholar 

  • Helo C, Longpre M-A, Shimizu N, Clague D A and Stix J 2011 CO2 rich magmas from Axial Seamount – A link to explosive eruptions on mid-ocean ridges?; Nature Geosci. 4 260–263.

  • Imbrie J, Hays J D, Martinson D G, McIntyre A, Mix A C, Morley J J, Pisias N G, Prell W L and Shackleton N J 1984 The orbital theory of Pleistocene climate support from a revised chronology of the marine delta δ18O record; In: Milankovitch and Climate (pt. 1) (eds) Berger A, Imbrie J, Hays J, Kukla G and Saltzman B, Dordrecht (D. Reidel), pp. 269–305.

  • Iyer S D 2007 Volcanics of the Central Indian Ocean Basin; J. Geol. Soc. India 70 883–884.

    Google Scholar 

  • Iyer S D, Shyam P M, Gupta S M and Charan S N 1997 Evidence for recent hydrothermal activity in the Central Indian Basin; Deep-Sea Res. 44 1167–1184.

  • Iyer S D, Fernandes G Q and Mahender K 2012 Coarse fraction components in a red-clay sediment core, Central Indian Ocean Basin: Their occurrence and significance; J. Indian Assoc. Sedim. 31 123–135.

    Google Scholar 

  • Jarosewich E, Nelen J A and Norberg J A 1980 Reference samples for electron microprobe analysis; Geostd. Newslett. 4 43–47.

    Google Scholar 

  • Johnson D A and Nigrini C 1982 Radiolarian biogeography in the surface sediments of Eastern Indian Ocean; Mar. Micropaleontol. 7 237–282.

    Google Scholar 

  • Jumaila C P U, Pattan J N, Ahmad S M, Parthiban G, Khedekar V D, Padmakumari V M and Milindraj P 2017 Morphology and chemical composition of ash layer of about 8 Ma old from ODP-758 site Bay of Bengal; Ind. J. Geo-Mar. Sci. 46 871–876.

    Google Scholar 

  • Kalangutkar N G, Iyer S D, Mascarenhas-Pereira M B L and Nath B N 2015 Hydrothermal signature in ferromanganese oxide coatings on pumice from the Central Indian Ocean Basin; Geo-Mar. Lett. 35 221–235.

    Google Scholar 

  • Kalangutkar N G, Iyer S D and Ilangovan D 2011 Physical properties, morphology and petrological characteristics of pumices from the Central Indian Ocean Basin; Acta Geol. Sinc. 85 826–839.

    Google Scholar 

  • Kennet J P 1981 Marine tephrochronology; In: The Sea 7 1373–1436.

    Google Scholar 

  • Knight M D, Walker G L, Ellwood B B and Diehl J F 1986 Stratigraphy paleomagnetism, and magnetic fabric of the Toba tuffs: Constraints on the sources and eruptive styles; J. Geophys. Res. 91 10,355–10,382.

    Google Scholar 

  • Kolla V and Kidd R 1982 Sedimentation and sedimentary processes in the Indian Ocean; The Ocean Basins and Margins, The Indian Ocean. Plenum. 6 1–45.

    Google Scholar 

  • Kunz J, Bollinger K, Jessberger E K and Storzer D 2000 Ages of Australasian tektites; Lunar Planet. Sci. 36 809–810.

    Google Scholar 

  • Lane C S, Blockley S P, Mangerud J, Smith V C, Lohne O S, Tomlinson E, Matthews I P and Lotter A 2012 Was the 12.1 ka Icelandic Vedde ash one of a kind?; Quat. Sci. Rev. 33 87–99.

    Google Scholar 

  • Lane C S, Lowe D J, Blockley S P E, Suzuki T and Smith V C 2017 Advancing tephrochronology as a global dating tool: Applications in volcanology, archaeology, and palaeoclimatic research; Quat. Geochronol. 40 1–7.

    Google Scholar 

  • Lee M Y, Chen C H, Wei K Y and Iizuka Y 2003 Astronomical calibration of the first Toba super-eruption from deep-sea sediments; Geophys. Res. 5 12799.

    Google Scholar 

  • Lee M Y, Chen C H, Wei K Y, Iizuka Y and Carey S 2004 First Toba super-eruption revival; Geology 32 61–64.

    Google Scholar 

  • Liu Z, Colin C and Trentesaux A 2006 Major element geochemistry of glass shards and minerals of the Youngest Toba Tephra in the southwestern South China Sea; J. Asian Earth Sci. 27 99–107.

    Google Scholar 

  • Lowe D J 2011 Tephrochronology and its applications: A review; Quart. Geochron. 6 107–153.

    Google Scholar 

  • Mark D F, Renne P R, Dymock R C, Smith V C, Simon J I, Morgan L E, Staff R A, Ellis B S and Pearce N J 2017 High-precision 40Ar/39Ar dating of Pleistocene tuffs and temporal anchoring of the Matuyama-Brunhes boundary; Quat. Geochronol. 39 1–23.

    Google Scholar 

  • Martin-Barajas A and Lallier-Verges E 1993 Ash layers and pumice in the Central Indian Basin: relationship to the formation of manganese nodules; Mar. Geol. 115 307–329.

    Google Scholar 

  • Mascarenhas-Pereira M B L, Nath B N, Borole D V and Gupta S M 2006 Nature, source and composition of volcanic ash in sediments from a fracture zone trace of Rodriguez Triple Junction in the Central Indian Basin; Mar. Geol. 229 79–90.

    Google Scholar 

  • Mascarenhas-Pereira M B L, Nath B N, Iyer S D, Borole D V, Parthiban G, Jijin R and Khedekar V 2016 Multiple ash layers in late Quaternary sediments from the Central Indian Basin; J. Volcanol. Geotherm. Res. 316 85–100.

    Google Scholar 

  • Maicher D and White J D L 2001 The formation of deep-sea Limu o Pele; Bull. Volcanol. 63 482–496.

    Google Scholar 

  • Mukhopadhyay R, Ghosh A K and Iyer S D 2018 The Indian Ocean nodule field: Geology and Resource Potential; 2nd edn, 413p.

  • Nath B N, Rao V P C and Becker K P 1989 Geochemical evidence of terrigenous influence in deep-sea sediments up to 8°S in the Central Indian Basin; Mar. Geol. 87 301–313.

    Google Scholar 

  • Nath B N, Sijinkumar A V, Borole D V, Gupta S M, Mergulhao L P, Mascarenhas-Pereira M B L, Ramaswamy V, Gupta M V S, Possnert G, Aldahan A, Khadge N H and Sharma R 2013 Record of carbonate preservation and the Mid-B runhes climatic shift from a seamount top with low sedimentation rats in the Central Indian Basin; Boreas 42 762–778.

    Google Scholar 

  • Ninkovich D 1979 Distribution, age and chemical composition of tephra layers in the deep-sea sediments off western Indonesia; J. Volcanol. Geotherm. Res. 5 67–86.

    Google Scholar 

  • Nishimura S, Abe E, Yokoyama T, Wirasantosa S and Dharma A D 1977 Danau Toba – the outline of Lake Toba, North Sumatra, Indonesia; Paleolimnol. Lake Biwa Japan Pleist. 5 313–332.

    Google Scholar 

  • Oppenheimer C 2002 Limited global change due to the largest known Quaternary eruption Toba ~74 kyr BP?; Quat. Sci. Rev. 21 1593–1609.

    Google Scholar 

  • Padmakumari V M and Ahmad S M 2004 Ash layer at ~8 Ma in ODP Site 758 from the Bay of Bengal: Evidence from Sr, Nd isotopic compositions and rare earth elements; Curr. Sci. 86 1323–1325.

    Google Scholar 

  • Pattan J N, Shane P and Banakar V K 1999 New occurrence of Youngest Toba Tuff in abyssal sediments of the Central Indian Basin; Mar. Geol. 155 243–248.

    Google Scholar 

  • Pattan J N and Parthiban G 2007 Do manganese nodules grow or dissolve after burial? Results from the Central Indian Ocean Basin; J. Asian Earth Sci. 30 696–705.

    Google Scholar 

  • Pattan J N, Shane P A R, Pearce N J G, Banakar V K and Parthiban G 2002 An occurrence of the 74 ka Youngest Toba Tephra from the western continental margin of India; Curr. Sci. 80 1322–1326.

    Google Scholar 

  • Pattan J N, Shyam P M and Babu E V S S K 2010 Correlation of the Oldest Toba Tuff to sediments in the central Indian Ocean Basin; J. Earth Syst. Sci. 119 531–539.

    Google Scholar 

  • Pearce N J, Westgate J A, Gatti E, Pattan J N, Parthiban G and Achyuthan H 2014 Individual glass shard trace element analyses confirm that all known Toba tephra reported from India is from the c. 75-ka Youngest Toba eruption; J. Quat. Sci. 29 729–734.

    Google Scholar 

  • Prasad M S, Mahale V P and Kodagali V N 2007 New sites of Australasian microtektites in the central Indian Ocean: Implications for the location and size of source crater; J. Geophys. Res. (Oceans) 112 1–11.

    Google Scholar 

  • Prasad M S, Roy S K and Gupta A 2010 Changes in abundance and nature of micro impact craters on the surfaces of Australasian microtektites with distance from the proposed source crater location; Meteor. Planet. Sci. 45 990–1006.

    Google Scholar 

  • Prasad M S, Rudraswami N G and Panda D K 2013 Micrometeorite flux on Earth during the last ∼50,000 years; J. Geophys. Res. (Planets) 118 1–19.

    Google Scholar 

  • Rampino M R and Self S 1993 Bottleneck in human evolution and the Toba eruption; Science 262 1955.

  • Rose W I and Chesner C A 1987 Dispersal of ash in the great Toba eruption, 75 ka; Geology 15 913–917.

    Google Scholar 

  • Schipper C I and White J D L 2010 No depth limit to hydrovolcanic Limu o Pele: Analysis of Limu from Loihi Seamount Hawaii; Bull. Volcanol. 72 149–164.

    Google Scholar 

  • Schultz H, Emeis K, Erlenkeuser H, von Rad U and Rolf C 2002 The Toba volcanic event and interstadial/stadial climates at the Marine Isotope Stage 5/4 transition in the northern Indian Ocean; Quat. Res. 57 22–31.

    Google Scholar 

  • Scudder R P, Murray R and Plank T 2009 Dispersed ash in deeply buried sediment from the Northwest Pacific Ocean: An example from the Izu-Bonin arc (ODP site 1149); Earth Planet. Sci. Lett. 284 639–648.

    Google Scholar 

  • Scudder R P, Murray R W, Schindlbeck J C, Kutterolf S, Hauff F, Underwood M B, Gwizd S, Lauzon R and McKinley C C 2016 Geochemical approaches to the quantification of dispersed volcanic ash in marine sediment; Prog. Earth Planet. Sci. 3 1–32.

    Google Scholar 

  • Shane P, Westgate J, Williams M and Korisettar R 1995 New geochemical evidence for the youngest Toba Tuff in India; Quat. Res. 44 200–204.

    Google Scholar 

  • Song S R, Chen C H, Lee M Y, Yang T F, Iizuka Y and Wei K Y 2000 Newly discovered eastern dispersal of the youngest Toba Tuff; Mar. Geol. 167 303–312.

    Google Scholar 

  • Srivastava A K and Singh A 2019 YTT ash from Quaternary sediments of Kapileshwar area, Purna alluvial basin, Central India; Quater. Int., doi.org/10.1016/j.quaint.2019.02.006.

  • Storey M, Roberts R G and Saidin M 2012 Astronomically calibrated Ar−40/Ar−39 age for the Toba supereruption and global synchronization of late Quaternary records; Proc. Nat. Acad. Sci. USA 109(46) 18,684–18,688.

  • Sukumaran N P, Banerjee R, Borole D V and Gupta S M 1999 Some aspects of volcanic ash layers in the Central Indian Basin; Geo-Mar. Lett. 18 203–298.

    Google Scholar 

  • Udinstev G B 1975 Geological–Geophysical Atlas of the Indian Ocean; Pergamon, London, 151p.

    Google Scholar 

  • Vineesh T C, Nath B N, Banerjee R, Jaisankar S and Lekshmi V 2009 Manganese nodule morphology as indicators for oceanic processes in the Central Indian Basin; Inter. Geol. Rev. 51 27–44.

    Google Scholar 

  • Weisner M, Wang Y and Zheng L 1995 Fallout of volcanic ash to the deep South China Sea induced by the 1991 eruption of Mount Pinatubo, Philippines; Geology 23 885–888.

    Google Scholar 

  • Westgate J A, Shane P A R, Pearce N J G, Perkins W T, Korisettar R, Chesner C A, Williams M A J and Acharyya S K 1998 Toba Tephra across India; PANGAEA, https://doi.org/10.1594/PANGAEA.754857.

  • Williams M A J, Ambrose S H, van der Kaar S, Ruehlemann U, Chattopadhyaya J P and Chauhan P 2009 Environmental impact of the 73 ka Toba super-eruption in South Asia; Palaeogeogr. Palaeoclimatol. Palaeoecol. 284 295–314.

    Google Scholar 

  • Wittke J H, James C W, Ted E B, James P K, Douglas J K, Moore M T, Gordon C H, Kenneth B T, Albert C G, Christopher R M, Daniel I R, Ray J H, Lopinot N H, Ferraro D, Israde-Alcántara I, Bischoff J L, De Carli P S, Hermes R E, Kloosterman J B, Revay Z, Howard G A, Kimbel D R, Kletetschka G, Nabelek L, Lipo C P, Sakai S, West A and Firestone R B 2013 Evidence for deposition of 10 million tonnes of impact spherules across four continents 12,800 yrs ago; Proc. Nat. Acad. Sci. USA 110(23) E2088–E2097.

    Google Scholar 

  • Wohletz K H 1983 Mechanisms of hydrovolcanic pyroclast formation: size, shape, and experimental studies; J. Volcanol. Geotherm. Res. 17 31–63.

    Google Scholar 

Download references

Acknowledgements

We acknowledge the Director of CSIR-NIO, Goa for providing facilities to carry out the study. We thank Dr Martin Jutzeler, University of Tasmania for his invaluable suggestions on an earlier version of the manuscript. We are grateful to Mr. V Khedekar, Ms. Sahina and Ms. Valency for the assistance during the SEM-EDS analysis and to Mrs. Charushila and Mr. V Gaikwad for helping in preparing figures 1 and 3. AA thanks CSIR (Direct SRF) and the project ‘Surveys for Polymetallic Nodules’ (GAP 2175) for the research funds. We profusely thank the two anonymous reviewers for valuable comments which helped us to improve the manuscript. We are grateful to the Editor-in-Chief, Dr N V Chalapathi Rao, for encouraging us to submit the revised manuscript. We appreciate the help rendered by the Captain, crew, and participants of the AAS-22 cruise during sediment coring operations. This is NIO’s contribution number 6558.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ankeeta Amonkar.

Additional information

Communicated by N V Chalapathi Rao

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amonkar, A., Iyer, S.D., Babu, E.V.S.S.K. et al. Extending the limit of widespread dispersed Toba volcanic glass shards and identification of new in-situ volcanic events in the Central Indian Ocean Basin. J Earth Syst Sci 129, 175 (2020). https://doi.org/10.1007/s12040-020-01429-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12040-020-01429-6

Keywords

Navigation