Skip to main content

Advertisement

Log in

The sedimentological and stratigraphical analysis of the Paleocene to Early Eocene Dungan Formation, Kirthar Fold and Thrust Belt, Pakistan: implications for reservoir potential

  • Original Article
  • Published:
Journal of Sedimentary Environments Aims and scope Submit manuscript

Abstract

The present study aims to evaluate the Paleocene to Early Eocene carbonates of the Dungan Formation in the Kirthar Fold and Thrust Belt, Pakistan for its paleo-depositional environment, sequence stratigraphy, and diagenetic effects on reservoir potential. The utilization of outcrop data for faunal identification and microfacies techniques helped in interpreting the paleo-environments and sequence stratigraphic framework. The microfacies analysis revealed that carbonates of the Dungan Formation in the Kirthar Fold and Thrust Belt represent a distal middle shelf-deep basinal settings of deposition. We documented a sea-level rise of second-order (spanning from Middle Danian to Ypresian) that in turn consists of a Transgressive Systems Tract (TST) and a Regressive Systems Tract (RST) of third-order cyclicity, spanning from Danian–Selandian and Thanetian-Early Ypresian respectively. The comparison with published data, the sea-level oscillations is influenced by eustacy and local tectonics. The hydrocarbon reservoir rock characterization of the carbonates is achieved by recording marine, burial, and meteoric diagenetic phases. The processes of cementation, micritization, neomorphism, and compaction occluded the effective porosity while dissolution and fracturing have enhanced the porosity and permeability of the rock unit. The petrographic evidence augmented by quantitative plug porosity and permeability data suggest poor to moderate reservoir potential of the carbonates of the Dungan Formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and material

The data used in this manuscript can be obtained from the corresponding author upon reasonable request.

References

  • Adey, W. H., & Macintyre, I. (1973). Crustose coralline algae: a re-evaluation in the geological sciences. Geological Society of America Bulletin, 84(3), 883–904.

    Google Scholar 

  • Afzal, J., Williams, M., Leng, M. J., Aldridge, R. J., & Stephenson, M. H. (2011). Evolution of Paleocene to Early Eocene larger benthic foraminifer assemblages of the Indus Basin, Pakistan. Lethaia, 44(3), 299–320.

    Google Scholar 

  • Aḥmad, Nī. (1996). Palaeoenvironments, diagenesis, and geochemical studies of the Dungan Formation (Palaeocene), eastern Sulaiman Range. Leicester: University of Leicester.

    Google Scholar 

  • Ahmad, N., & Ahmad, S. (2001). Petrography of the dungan formation eastern sulaiman range, Pakistan. Geological Bulletin Punjab University, 36, 1–16.

    Google Scholar 

  • Ahmad, N., & Hudson, J. (2000). Diagenetic environments of the Dungan Formation, eastern Sulaiman Range, Pakistan. Geological Bulletin of the Punjab University, 35, 21–36.

    Google Scholar 

  • Ahmad, N., & Pedley, H. M. (1997). Facies and Paleo-environments of the Dungan Formation, Eastern Sulaiman Range, Pakistan. Geological Bulletin University of Punjab, 31–32.

  • Ahmad, S., Wadood, B., Khan, S., Ahmed, S., Ali, F., & Saboor, A. (2020). Integrating the palynostratigraphy, petrography, X-ray diffraction and scanning electron microscopy data for evaluating hydrocarbon reservoir potential of Jurassic rocks in the Kala Chitta Range, Northwest Pakistan. Journal of Petroleum Exploration and Production Technology. https://doi.org/10.1007/s13202-020-00957-7.

    Article  Google Scholar 

  • Ahmed, R., & Ali, S. M. (1991). Tectonic and structural development of the eastern part of Kirthar Fold Belt and its hydrocarbon prospects. Pakistan Journal of Hydrocarbon Research, 3(2), 19–31.

    Google Scholar 

  • Allemann, F. (1979). Time of emplacement of the Zhob Valley ophiolites and Bela ophiolites, Baluchistan (preliminary report) (pp. 215–242). Quetta: Geodynamics of Pakistan. Geological Survey of Pakistan.

    Google Scholar 

  • Allen, S., Coterill, K., Eisner, P., Perez-Cruz, G., Wornardt, W., & Vail, P. Micropaleontology, well log and seismic sequence stratigraphy of the Plio-Pleistocene depositional sequences—offshore Texas. In Sequence Stratigraphy as an Exploration Tool: Concepts and Practices, Eleventh Annual Conference, June, 1991 (pp. 2–5)

  • Anketell, J., & Mriheel, I. (2000). Depositional environment and diagenesis of the Eocene Jdeir Formation, Gabes-Tripoli basin, Western Offshore, Libya. Journal of Petroleum Geology, 23(4), 425–447.

    Google Scholar 

  • Anwar, M. (1991). Revised nomenclature and stratigraphy of Ferozabad, Alozai and Mona Jhal Groups of Balochistan (Axial Belt) Pakistan. Acta Mineral. Pakistan, 5, 46–61.

    Google Scholar 

  • Arkell, W. (1956). Jurassic geology of the world:Oliver and Boyd Ltd. London: Edinburgh.

    Google Scholar 

  • Armentrout, J., & Clement, J. Biostratigraphic calibration of depositional cycles: a case study in High Island-Galveston-East Breaks areas, offshore Texas. In Gulf Coast Section SEPM 11th Annual Research Conference, 1990 (pp. 21–51)

  • Armentrout, J. M., Echols, R. J., & Lee, T. D. (1991). Patterns of foraminiferal abundance and diversity: implications for sequence stratigraphic analysis. AAPG Bulletin (American Association of Petroleum Geologists);(United States), 75(CONF-910403).

  • Banks, C., & Warburton, J. (1986). ‘Passive-roof’duplex geometry in the frontal structures of the Kirthar and Sulaiman mountain belts, Pakistan. Journal of structural Geology, 8(3–4), 229–237.

    Google Scholar 

  • Becher, J. W., & Moore, C. H. (1976). The Walker Creek Field: a Smackover diagenetic trap. Transactions of Gulf Coast Association of Geological Societies, 26, 34–56.

    Google Scholar 

  • Berelson, W. M., Hammond, D. E., McManus, J., & Kilgore, T. E. (1994). Dissolution kinetics of calcium carbonate in equatorial Pacific sediments. Global Biogeochemical Cycles, 8(2), 219–235.

    Google Scholar 

  • Berggren, W. A., & Pearson, P. N. (2005). A revised tropical to subtropical Paleogene planktonic foraminiferal zonation. The Journal of Foraminiferal Research, 35(4), 279–298.

    Google Scholar 

  • Boggs, S, Jr. (2014). Principles of sedimentology and stratigraphy. London, UK: Pearson Education.

    Google Scholar 

  • Budd, D. A. (2002). The relative roles of compaction and early cementation in the destruction of permeability in carbonate grainstones: a case study from the Paleogene of west-central Florida, USA. Journal of Sedimentary Research, 72(1), 116–128.

    Google Scholar 

  • Canudo, J., Keller, G., Molina, E., & Ortiz, N. (1995). Planktic foraminiferal turnover and δ13C isotopes across the Paleocene-Eocene transition at Caravaca and Zumaya, Spain. Palaeogeography, Palaeoclimatology, Palaeoecology, 114(1), 75–100.

    Google Scholar 

  • Carozzi, A. V. (1988). Carbonate rock depositional models: A microfacies approach. Englewood Cliffs: Prentice Hall.

    Google Scholar 

  • Carter, R. M. (1998). Two models: global sea-level change and sequence stratigraphic architecture. Sedimentary Geology, 122(1–4), 23–36.

    Google Scholar 

  • Chassefiere, B., Lundhardt, O., & Levy, A. (1969). Données nouvelles sur les cadoules (édifices coquilliers) de la lagune de Thau (Hérault.). Compte rendu sommaire des séances de la Société Géologique de France, 5, 140–142.

    Google Scholar 

  • Cheema, M. (1977). Cainozoic. Stratigraphy of Pakistan. Memoirs of the Geological Survey of Pakistan Quetta, 12, 1–138.

    Google Scholar 

  • Cuffey, R. J. (1972). The roles of bryozoans in modern coral reefs. Geologische Rundschau, 61(2), 542–550.

    Google Scholar 

  • Davies, L. M. (1941). The “Dunghan” limestone, and Ranikot beds in Baluchistan. Geological Magazine, 78(4), 316–317.

    Google Scholar 

  • Duncan, P., & Sladen, W. (1884). Description of the fossil Echinoidea from the Khirthar Series of Nummulitic strata in Western Sind. Palaeontologia Indica, Series, 14, 101–246.

    Google Scholar 

  • Dunham, R. J. (1962). Classification of carbonate rocks according to depositional texture. In W. E. Ham (Ed.), Classification of carbonate rocks (pp. 108–121). Tulsa, OK: Memoir American Association of Petroleum Geologists.

    Google Scholar 

  • Eames, F. (1952). A contribution to the study of the Eocene in western Pakistan and western India C. The description of the Scaphopoda and Gastropoda from Standard sections in the Rakhi Nala and Zinda Pir areas of the western Punjab and in the Kohat district. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 236, 1–168.

    Google Scholar 

  • Embry, A. F. Transgressive-regressive (TR) sequence stratigraphy. In Gulf Coast SEPM Conference Proceedings, Houston, 2002 (pp. 151–172)

  • Embry, A., & Johannessen, E. (1992). T–R sequence stratigraphy, facies analysis and reservoir distribution in the uppermost Triassic–Lower Jurassic succession, western Sverdrup Basin, Arctic Canada. In Norwegian Petroleum Society Special Publications (Vol. 2, pp. 121–146): Elsevier.

  • Emery, D., & Myers, K. (2009). Sequence stratigraphy. Hoboken: Wiley.

    Google Scholar 

  • Fatmi, A. (1977). Mesozoic. Stratigraphy of Pakistan, 12, 29–56.

    Google Scholar 

  • Fleury, J.-J., Bignot, G., Blondeau, A., & Poignant, A. (1985). Biogéographie de Foraminifères benthiques téthysiens du Sénonien à l'Éocène supérieur. Bulletin de la Société géologique de France, 1(5), 757–770.

    Google Scholar 

  • Flügel, E. (2004). Microfacies of carbonate rocks-analysis, interpretation and application. Berlin: Springer.

    Google Scholar 

  • Folk, R. L. (1965). Some aspects of recrystallization in ancient limestones. In L. C. Pray & R. C. Murray (Eds.), Dolomitization and Limestone Diagenesis (pp. 14–48). Tulsa, OK: Society Economic Paleontologists and Mineralogists.

    Google Scholar 

  • Fruth, L., Orme, G., & Donath, F. (1966). Experimental compaction effects in carbonate sediments. Journal of Sedimentary Research, 36(3), 747–754.

    Google Scholar 

  • Geel, T. (2000). Recognition of stratigraphic sequences in carbonate platform and slope deposits: empirical models based on microfacies analysis of Palaeogene deposits in southeastern Spain. Palaeogeography, Palaeoclimatology, Palaeoecology, 155(3–4), 211–238.

    Google Scholar 

  • Hanif, M., Imraz, M., Ali, F., Haneef, M., Saboor, A., Iqbal, S., et al. (2014). The inner ramp facies of the Thanetian Lockhart Formation, western Salt Range, Indus Basin, Pakistan. Arabian Journal of Geosciences, 7(11), 4911–4926.

    Google Scholar 

  • Haq, B. U., Hardenbol, J., & Vail, P. R. (1987). Chronology of fluctuating sea levels since the Triassic. Science, 235(4793), 1156–1167.

    Google Scholar 

  • Heckel, P. H. (1983). Diagenetic model for carbonate rocks in Midcontinent Pennsylvanian eustatic cyclothems. Journal of Sedimentary Research, 53(3), 733–759.

    Google Scholar 

  • Hedley, R., Warburton, J., & Smewing, J. (2001). Sequence stratigraphy and tectonics in the Kirthar Foldbelt, Pakistan. Geology and climate of the Arabian Sea region, Geol Society London.

  • Hemphill, W. R., & Kidwai, A. H. (1973a). Stratigraphy of the Bannu and Dera Ismail Khan areas, Pakistan.

  • Hemphill, W. R., & Kidwai, A. H. (1973b). Stratigraphy of the Bannu and Dera Ismail Khan areas, Pakistan.

  • Henson, F. (1950). Cretaceous and Tertiary reef formations and associated sediments in Middle East. AAPG Bulletin, 34(2), 215–238.

    Google Scholar 

  • Hinsch, R., Asmar, C., Nasim, M., Abbas, M. A., & Sultan, S. (2019). Linked thick-to thin-skinned inversion in the central Kirthar Fold Belt of Pakistan. Solid Earth, 10(2), 425–446.

    Google Scholar 

  • Hottinger, L. (1983). Processes determining the distribution of larger foraminifera in space and time. Utrecht Micropaleontological Bulletins, 30, 239–253.

    Google Scholar 

  • Hubbard, R. J. (1988). Age and significance of sequence boundaries on Jurassic and Early Cretaceous rifted continental margins. AAPG Bulletin, 72(1), 49–72.

    Google Scholar 

  • Hunter, R. E., Clifton, H. E., & Phillips, R. L. (1979). Depositional processes, sedimentary structures, and predicted vertical sequences in barred nearshore systems, southern Oregon coast. Journal of Sedimentary Research, 49(3), 711–726.

    Google Scholar 

  • Kadri, I. B. (1995). Petroleum geology of Pakistan. Karachi: Graphic Publishers.

    Google Scholar 

  • Kakar, D., & Kassi, A. (1997). Lithostratigraphy, sedimentation and petrology of the Ghazij Formation, Sor Range area, Quetta District, Pakistan. Acta Mineral Pakistan, 8, 73–85.

    Google Scholar 

  • Kassi, A. M., Qureshi, A. R., & Kakar, D. M. (1987). Sedimentology of the Ghazij Formation, Kach area, Balochistan. Geological Bulletin of the University of Peshawar, 20, 53–62.

    Google Scholar 

  • Kazmi, A. (1981). Stratigraphy And sedimentation of the jurassic in north-eastern baluchistan. Geological Bulletin of the University of Peshawar, 14, 193–198.

    Google Scholar 

  • Kazmi, A. H. (1988). Stratigraphy of the Dungan Group in Kach-Ziarat Area, NE Balochistan. Journal of Himalayan Earth Sciences, 21, 117–130.

    Google Scholar 

  • Kazmi, A. H., & Jan, M. Q. (1997). Geology and tectonics of Pakistan. Karachi: Graphic publishers.

    Google Scholar 

  • Kazmi, A. H., & Rana, R. A. (1982). Tectonic Map of Pakistan 1: 2 000 000: Elite Print.

  • Khan, R. A., Haneef, M., & Khan, M. A. (2010). Microfacies and depositional environments of the Jurassic to Paleocene carbonates in the Kharzan area, Khuzdar, Balochistan. Journal of Himalayan Earth Sciences, 43, 45–45.

    Google Scholar 

  • Khan, S. (2013). Biostratigraphy and microfacies of the Cretaceous Sediments in the Indus Basin, Pakistan. Ph.D. dissertation. University of Edinburgh, Edinburgh.

  • Khan, S., Wadood, B., Ahmed, S., Khan, A., Ahmed, F., & Khan, H. (2017). Evaluating paleoceanographic and planktonic foraminiferal diversification from the Cretaceous Mughal Kot Formation, Mughal Kot Section, Lower Indus Basin. Pakistan. Journal of Himalayan Earth Science, 50(2), 27–43.

    Google Scholar 

  • Khan, S. D., Walker, D. J., Hall, S. A., Burke, K. C., Shah, M. T., & Stockli, L. (2009). Did the Kohistan-Ladakh island arc collide first with India? Geological Society of America Bulletin, 121(3–4), 366–384.

    Google Scholar 

  • Latif, M. (1964). Variations in abundance and morphology of pelagic Foraminifera in the Paleocene–Eocene of the Rakhi Nala, West Pakistan. Geological Bulletin of Punjab University, 4, 29–100.

    Google Scholar 

  • Levin, H. L. (1957). Micropaleontology of the Oldsmar limestone (Eocene) of Florida. Micropaleontology, 3(2), 137–154.

    Google Scholar 

  • Loeblich, A., Jr. (1964). Sarcodina, chiefly" thecamoebians" and Foraminiferida (p. 2). Protista: Treatise on invertebrate paleontology.

    Google Scholar 

  • Loutit, T. S., Hardenbol, J., Vail, P. R. & Baum, G. R. (1988). Condensed sections: the key to age dating and correlation of continental margin sequences. In C. K. Wilgus, B. S. Hastings, et al. (Eds.), Sea level changes: an integrated approach (Vol 42, pp. 183–216). Special Publication of the Society of Economists, Paleontologists and Mineralogists.

  • Lu, G., & Keller, G. (1993). The Paleocene–Eocene transition in the Antarctic Indian Ocean: Inference from planktic foraminifera. Marine Micropaleontology, 21(1–3), 101–142.

    Google Scholar 

  • Lu, G., & Keller, G. (1995). Planktic foraminiferal faunal turnovers in the subtropical Pacific during the late Paleocene to early Eocene. The Journal of Foraminiferal Research, 25(2), 97–116.

    Google Scholar 

  • Meissner, C. R. (1973). Distribution, thickness, and lithology of Paleocene rocks in Pakistan (No. 716-E). US Geological Survey.

  • Muhammad, B., Khan, S., Mohibullah, M., Kasi, A. K., & Ghani, M. (2018). Planktonic foraminiferal biostratigraphy and depositional setting of the Cretaceous Parh Limestone, Quetta, western Sulaiman Fold-Thrust Belt, Balochistan, Pakistan. Journal of Himalayan Earth Sciences, 51(2A), 8–23.

    Google Scholar 

  • Murray, J. W. (1973). Distribution and ecology of living benthic foraminiferids. Crane Russak & Co., New York. xiii+ 274 p. $24.75. Limnology and Oceanography, 18(6), 1011–1011.

  • Myers, E. (1943). Ecologic relationships of larger foraminifera. Rep. Comm. mar. Ecol. Paleont. Wash, 26–33.

  • Parker, F. L. (1971). Distribution of planktonic foraminifera in recent deep-sea sediments. In B. M. Funnel & W. R. Riedel (Eds.), Micropaleontology of oceans (pp. 289–307). Cambridge: Cambridge University Press.

    Google Scholar 

  • Racey, A. (1995). Lithostratigraphy and larger foraminiferal (nummulitid) biostratigraphy of the Tertiary of northern Oman. Micropaleontology, 41, 1–123.

    Google Scholar 

  • Rahman, H. N. Geology of petroleum in Pakistan. In 6th World Petroleum Congress, 1963: World Petroleum Congress

  • Rehman, H., Mohibullah, M., Kasi, A. K., & Hussain, H. S. (2018). Foraminiferal biostratigraphy of the Dungan Formation, Harnai area, western Sulaiman Fold-Thrust Belt Pakistan. Journal Of Himalayan Earth Sciences, 51(2A), 34–43.

    Google Scholar 

  • Reiss, Z., & Hottinger, L. (1984). The Gulf of Aquaba: Ecological Micropaleontology. New York: Spnrnger.

    Google Scholar 

  • Samanta, B. K. (1973). Planktonic foraminifera from the Paleocene-Eocene succession in the Rakhi Nala, Sulaiman Range, Pakistan. Bulletins of the British Museum (Natural History) Geology, 22, 433–481.

  • Sarkar, S. (2019). Alveolina-dominated assemblages in the early Eocene carbonates of Jaintia Hills, NE India: Biostratigraphic and palaeoenvironmental implications. Comptes Rendus Palevol, 18(8), 949–966.

    Google Scholar 

  • Scheibner, C., & Speijer, R. (2009). Recalibration of the Tethyan shallow-benthic zonation across the Paleocene-Eocene boundary: the Egyptian record. Geologica Acta, 7(1), 195–214.

    Google Scholar 

  • Scholle, P. A., & Ulmer-Scholle, D. S. (2003). A color guide to the petrography of carbonate rocks: Grains, Textures, Porosity, Diagenesis, AAPG Memoir 77 (Vol. 77): AAPG.

  • Serra-Kiel, J., Hottinger, L., Caus, E., Drobne, K., Ferrandez, C., Jauhri, A. K., et al. (1998). Larger foraminiferal biostratigraphy of the Tethyan Paleocene and Eocene. Bulletin de la Société géologique de France, 169(2), 281–299.

    Google Scholar 

  • Serra-Kiel, J., i Herrero, A. T., i Palós, E. M., Briansó, E. S., i Cañadell, C. F., i Angrill, J. T., & i Masip, J. V. (2003). Marine and Transitional Middle/Upper Eocene Units of the Southeastern Pyrenean Forelan Basin (NE spain). Geologica Acta, 1(2), 177–177.

  • Shackleton, N., Corfield, R., & Hall, M. (1985). Stable isotope data and the ontogeny of Paleocene planktonic foraminifera. The Journal of Foraminiferal Research, 15(4), 321–336.

    Google Scholar 

  • Shafique, N. A., & Daniels, C. (1990). Foraminiferal zonation of Upper Goru Formation-Bawani area, Kirthar Range, Pakistan. Journal of Hydrocarbon Research, 2(2), 67–84.

    Google Scholar 

  • Shah, S. (1977). Stratigraphy of Pakistan, Geological Survey of Pakistan Memoirs 12. Islamabad, Pakistan: Geol Surv Pakistan

  • Shah, S. M. I. (2009). Stratigraphy of Pakistan. Geological Survey Pakistan Membership, 22, 1–381.

    Google Scholar 

  • Shahin, A. (2001). Mass extinction and bioevents across the Paleocene-Eocene boundary in the western Sinai, Egypt. Neues Jahrbuch für Geologie und Paläontologie-Monatshefte, 1–20.

  • Smewing, J. D., Warburton, J., Daley, T., Copestake, P., & Ul-Haq, N. (2002). Sequence stratigraphy of the southern Kirthar fold belt and middle Indus basin, Pakistan. Geological Society, London, Special Publications, 195(1), 273–299.

    Google Scholar 

  • Stainbank, S., Kroon, D., Rüggeberg, A., Raddatz, J., de Leau, E. S., Zhang, M., et al. (2019). Controls on planktonic foraminifera apparent calcification depths for the northern equatorial Indian Ocean. PLoS One, 14(9), e0222299.

    Google Scholar 

  • Steinsund, P. I., & Hald, M. (1994). Recent calcium carbonate dissolution in the Barents Sea: Paleoceanographic applications. Marine Geology, 117(1–4), 303–316.

    Google Scholar 

  • Taghavi, A. A., Mørk, A., & Emadi, M. A. (2006). Sequence stratigraphically controlled diagenesis governs reservoir quality in the carbonate Dehluran Field, southwest Iran. Petroleum Geoscience, 12(2), 115–126.

    Google Scholar 

  • Taylor, P. D. (2005). Bryozoans and palaeoenvironmental interpretation. Journal of the Palaeontological Society of India, 50(2), 1–11.

    Google Scholar 

  • Tucker, M., & Wright, V. (1990). Modern carbonate environments, Carbonate Sedimentology (pp. 101–126). London: Blackwell Scientific Publications.

    Google Scholar 

  • Umar, M., Friis, H., Khan, A. S., Kassi, A. M., & Kasi, A. K. (2011). The effects of diagenesis on the reservoir characters in sandstones of the Late Cretaceous Pab Formation, Kirthar Fold Belt, southern Pakistan. Journal of Asian Earth Sciences, 40(2), 622–635.

    Google Scholar 

  • Van-der Zwaan, G. J. (1982). Paleoecology of late Miocene Mediterranean foraminifera. Utrecht University,

  • Van-Morkhoven, F. M., Berggren, W. A., & Edwards, A. S. (1986). Cenozoic cosmopolitan deep-water benthic foraminifera. Bulletin des centres de Recherches exploration-production elf-aquitaine (11).

  • Wadood, B., Awais, M., Khan, S., Ahmad, S., Ahmad, L., & Muslim, M. (2019). Diagenetic studies of the Cretaceous turbidities, Sulaiman Range, Pakistan: Implications for reservoir quality. Journal of Himalayan Earth Sciences, 52(1), 106–119.

    Google Scholar 

  • Wadood, B., Khan, S., Khan, A., Khan, M., Liu, Y., Li, H., et al. (2020). Diachroneity in the closure of the eastern Tethys Seaway: evidence from the cessation of marine sedimentation in northern Pakistan. Australian Journal of Earth Sciences. https://doi.org/10.1080/08120099.2020.1782472.

    Article  Google Scholar 

  • Walton, W. R. (1964). Recent foraminiferal ecology and paleoecology. Approaches to paleoecology, 1, 151–237.

    Google Scholar 

  • Warraich, M. Y. (2000). Paleogene planktonic foraminiferal biostratigraphy of the Sulaiman range, Southern Indus basin, Pakistan. Unpublished PhD Thesis, University of Tsukuba.

  • Weiss, W. (1993). Age assignments of larger foraminiferal assemblages of Maastrichtian to Eocene age in northern Pakistan. Zitteliana, 20, 223–252.

    Google Scholar 

  • Williams, M. D. 19. Stratigraphy of the Lower Indus Basin, West Pakistan. In 5th World petroleum congress, 1959: World Petroleum Congress

  • Wilson, J. L. (1975). The stratigraphy of carbonate deposits. In Carbonate Facies in Geologic History (pp. 20–55): Springer.

  • Wilson, M. D., & Stanton, P. T. (1994). Diagenetic mechanisms of porosity and permeability reduction and enhancement.

Download references

Acknowledgement

Authors are thankful to the Department of Geology, University of Peshawar, Pakistan for providing laboratory facilities to carry out microscopic studies.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bilal Wadood.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by M. V. Alves Martins

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, S., Wadood, B., Khan, S. et al. The sedimentological and stratigraphical analysis of the Paleocene to Early Eocene Dungan Formation, Kirthar Fold and Thrust Belt, Pakistan: implications for reservoir potential. J. Sediment. Environ. 5, 473–492 (2020). https://doi.org/10.1007/s43217-020-00027-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43217-020-00027-2

Keywords

Navigation