Skip to main content

Advertisement

Log in

Mineral trioxide aggregate bone cement based on wet-prepared calcium silicate

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

To make tricalcium silicate (C3S), SiO2 precursors were mixed with Ca(OH)2 powder, and the mixtures were fired at 900 °C. One of the SiO2 precursors, H2SiO3, was prepared using Na silicate and HCl. Another precursor, Si(OH)4, was prepared using Si(OC2H5)4 and ethanol. Active Ca(OH)2 powder was prepared by hydration of CaO powder, which was obtained through calcination of CaCO3 powder. The obtained microcrystalline tricalcium silicate powders were mixed with CaSO4·1/2H2O to make mineral trioxide aggregate (MTA) bone cement for dental purposes. The MTA bone cement powders were stirred and hydrated with DI H2O, and the hardened sample blocks showed good compressive strength. For the test blocks, mechanical strength was measured using a universal testing machine, and microstructural phase analysis was done using FESEM and XRD. Cement hardening occurred through hydration, decomposition, and recrystallization of C3S and CaSO4·2H2O and resulted in grain growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M. Torabinejad, N. Chivian, Clinical applications of mineral trioxide aggregate. J. Endod. 25(3), 197–205 (1999)

    Article  CAS  Google Scholar 

  2. M. Parirokh, M. Torabinejad, Mineral trioxide aggregate: comprehensive literature review-part3: clinical applications, drawbacks, and mechanism of action. J. Endod. 36(3), 400–413 (2010)

    Article  Google Scholar 

  3. M. Torabinejad, C.U. Hong, F. McDonald, T.R. Pitt Ford, Physical and chemical properties of a new root-end filling material. J. Endod. 21(7), 349–353 (1995)

    Article  CAS  Google Scholar 

  4. M. Torabinejad, T.F. Watson, T.R. Pitt Ford, Sealing ability of a mineral trioxide aggregate when used as a root end filling material. J. Endod. 19(12), 591–595 (1993)

    Article  CAS  Google Scholar 

  5. H.W. Roberts, J.M. Toth, D.W. Berzins, D.G. Charlton, Mineral trioxide aggregate material use in endodontic treatment: a review of the literature. Dent. Mater. 24(2), 149–164 (2008)

    Article  CAS  Google Scholar 

  6. J. Camilleri, Hydration mechanisms of mineral trioxide aggregate. Int. Endod. J. 40(6), 462–470 (2007)

    Article  CAS  Google Scholar 

  7. N.K. Sarkar, R. Caicedo, P. Ritwik, R. Moiseyeva, I. Kawashima, Physicochemical basis of the biologic properties of mineral trioxide aggregate. J. Endod. 31(2), 97–100 (2005)

    Article  CAS  Google Scholar 

  8. K.Y. Kum, Y.J. Yoo, S.W. Chang, Chemical constitution, morphological characteristics, and biological properties of proroot mineral trioxide aggregate and ortho mineral trioxide aggregate. J. Korean Dent. Sci. 6(2), 41–49 (2013)

    Article  Google Scholar 

  9. J.W. Lim, J.G. Guk, B. Singh, Y.C. Hwang, S.J. Song, H.S. Kim, Investigation on hydration process and biocompatibility of calcium silicate-based experimental portland cements. J. Korean Ceram. Soc. 56(4), 403–411 (2019)

    Article  CAS  Google Scholar 

  10. M.C. Chang, T. Ikoma, M. Kikuchi, J. Tanaka, Preparation of a porous hydroxyapatite/collagen nanocomposite using glutaraldehyde as a crosslinkage agent. J. Mater. Sci. Lett. 20(13), 1129–1201 (2001)

    Article  Google Scholar 

  11. I.M. Joni, L. Nulhakim, M. Vanitha, C. Panatarani, Characteristics of crystalline silica (SiO2) particles prepared by simple solution method using sodium silicate (Na2SiO3) precursor. J. Phys. Conf. Ser. 1080(1), 012006 (2018)

    Article  Google Scholar 

  12. M. Abou Rida, F. Harb, Synthesis and characterization of amorphous silica nanoparitcles from aqueous silicates using cationic surfactants. J. Met. Mater. Miner. 24(1), 37–42 (2014)

    CAS  Google Scholar 

  13. H.N. Azlina, J.N. Hasnidawani, H. Norita, S.N. Surip, Synthesis of SiO2 nanostructures using sol-gel method. Acta. Phys. Pol. A 129(4), 842–844 (2016)

    Article  CAS  Google Scholar 

  14. E. Pustovgar, R.P. Sangodkar, A.S. Andreev, M. Palacios, B.F. Chmelka, R.J. Flatt, J.-B. Espinose de Lacaillerie, Understanding silicate hydration from quantitative analyses of hydrating tricalcium silicates. Nat. Commun. 7, 10952 (2016)

    Article  CAS  Google Scholar 

  15. S. Telschow, Clinker burning kinetics and mechanism, Ph.D. Thesis, Technical University of Denmark, Kongens Lyngby, 2012

  16. A. Cuesta, J.D. Zea-Garcia, D. L.-Zuluaga, A.G. De la Torre, I. Santacruz, O. Vallcorba, M. Dapiaggi, S.G. Sanfélix, M.A.G. Aranda, Multiscale understanding of tricalcium silicate hydration reactions. Sci. Rep. 8, 8544 (2018)

    Article  Google Scholar 

  17. A. Chauhan, P. Chauhan, Usage of powder XRD technique for material characterization and analysis of portland cement. J. Anal. Bioanal. Tech. 6(6), 1–3 (2015)

    Google Scholar 

  18. S. Grangeon, F. Claret, Y. Linard, C. Chiaberg, X-ray diffraction: a powerful tool to probe and understand the structure of nanocrystalline calcium silicate hydrates. Acta Crystallogr. Sect. B 69, 465–473 (2013)

    Article  CAS  Google Scholar 

  19. M.-N. de Noirfontaine, F. Dunstetter, M. Courtial, G. Gasecki, M. S.-Frehel, Tricalcium silicate Ca3SiO5, the major component of anhydrous portland cement: on the conservation of distances and directions and their relationship to the structural elements. Z. Kristallogr. 218(1), 8–11 (2003)

    Google Scholar 

  20. J.W. Jeffery, The crystal structure of tricalcium silicate. Acta Cryst. 5, 26–35 (1952)

    Article  CAS  Google Scholar 

  21. N.I. Golovastikov, R.G. Matveeva, N.V. Belov, Crystal structure of the tricalcium silicate 3CaO.SiO2=C3S. Sov. Phys. Crystallogr. 20(4), 441–445 (1975)

    Google Scholar 

  22. A.M. Il’inets, Y.A. Malinovskii, N.N. Nevskii, Crystal structure of the rhombohedral modification of tricalcium silicate Ca3SiO5. Sov. Phys. Dokl. 30, 191 (1985)

    Google Scholar 

  23. W.G. Mumme, Crystal structure of tricalcium silicate from a portland cement clinker and its application to quantitative XRD analysis. N. Jb. Miner. Mh. H. 4, 145–160 (1995)

    Google Scholar 

  24. M. Courtial, M.-N. de Noirfontaine, F. Dunstetter, G. Gasecki, M. Signes-Frehel, Polymorphism of tricalcium silicate in portland cement: a fast visual identification of structure and superstructure. Powder Diffr. 18(1), 7–15 (2003)

    Article  CAS  Google Scholar 

  25. M. Böhm, K. Lipus, Evaluation of portland cement clinker with optical microscopy–case studies III. in Proceedings of the 15th Euroseminar on Microscopy Applied to Building Material,. (Delft, The Netherlands, 2015), pp. 33–37

  26. E. Durgun, H. Manzano, P.V. Kumar, J.C. Grossman, The characterization, stability, and reactivity of synthetic calcium silicate surfaces from first principles. J. Phys. Chem. C 118(28), 15214–15219 (2014)

    Article  CAS  Google Scholar 

  27. F. Nishi, Y. Takeuchi, The rhombohedral structure of tricalcium silicate at 1200°C. Z. Kristallogr. 168, 197–212 (1984)

    Article  CAS  Google Scholar 

  28. F. Nishi, Y. Takeuchi, I. Maki, The tricalcium silicate Ca3O[SiO4]: the monoclinic superstructure. Z. Kristallogr. 172(3–4), 297–314 (1985)

    Article  CAS  Google Scholar 

  29. K. Suzuki, I. Huruhashi, H. Hukui, Study on the X-ray characteristics of Ca2SiO4 with the single crystals synthesized and isolated frown portland cement clinker. J. Jpn. Ceram. Assoc. 79(6), 199–207 (1971)

    Article  CAS  Google Scholar 

  30. M. M. Costoya Fernandez, Effect of particle size on the hydration kinetics and microstructural development of tricalcium silicate, EPFL Swiss Ph.D. Thesis, University of Vigo, Pontevedra, 2008

  31. Q. Wang, H. Manzano, I. López-Arbeloa, X. Shen, Water adsorption on the β-Dicalcium silicate surface from DFT simulations. Minerals 8(9), 386–398 (2018)

    Article  Google Scholar 

  32. H. Manzano, E. Durgun, I. López-Arbeloa, J.C. Grossman, Insight on tricalcium silicate hydration and dissolution mechanism from molecular simulations. ACS Appl. Mater. Interfaces. 7(27), 14726–14733 (2015)

    Article  CAS  Google Scholar 

  33. G. Yamaguchi, Y. Ono, S. Kawamura, Y. Soda, Synthesis of the modifications of Ca2SiO4 and the determination of their powder X-ray diffraction patterns. J. Jpn. Ceram. Assoc. 71(2), 21–26 (1968)

    Google Scholar 

  34. A. Suzuki, I. Huruhashi, H. Hukui, Study on the X-ray characteristics of Ca2SiO4 with the single crystals synthesized and isolated frown portland cement clinker. J. Jpn. Ceram. Assoc. 79(6), 199–208 (1971)

    Article  CAS  Google Scholar 

  35. H. Manzano, E. Durgun, M.J. Abdolhosseine Qomi, F.-J. Ulm, R.J.M. Pellenq, J.C. Grossman, Impact of chemical impurities on the crystalline cement clinker phases determined by atomistic simulations. Cryst. Growth Des. 11(7), 2964–2972 (2011)

    Article  CAS  Google Scholar 

  36. E. Durgun, H. Manzano, R.J.M. Pellenq, J.C. Grossman, Understanding and controlling the reactivity of the calcium silicate phases from first principles. Chem. Mater. 24(7), 1262–1267 (2012)

    Article  CAS  Google Scholar 

  37. H. Le Chatelierh, Experimental researches on the constitution of hydraulic mortars (McGraw Publishing Co., New York, 1905)

    Google Scholar 

Download references

Acknowledgements

This research was supported by the general research support program of the National Research Foundation (NRF) funded by the South Korean Government (NRF-2017R1D1A1B03032397).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myung Chul Chang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, M.C. Mineral trioxide aggregate bone cement based on wet-prepared calcium silicate. J. Korean Ceram. Soc. 57, 40–55 (2020). https://doi.org/10.1007/s43207-019-00005-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-019-00005-z

Keywords

Navigation