Skip to main content

Advertisement

Log in

Saline extract of Portulaca elatior leaves with photoprotective and antioxidant activities does not show acute oral and dermal toxicity in mice

  • Original Article
  • Published:
Toxicological Research Aims and scope Submit manuscript

Abstract

The present study aimed to evaluate saline extracts from the leaves (LE) and stem (SE) of Portulaca elatior in relation to their phytochemical composition and photoprotective and antioxidant effects, as well as to evaluate the toxicity of the leaf extract. The extracts were characterized for protein concentration and phenol and flavonoid contents, as well as for thin layer chromatography (TLC) and high-performance liquid chromatography (HPLC) profiles. Total antioxidant capacity and DPPH and ABTS+ scavenging activities were determined. In the photoprotective activity assay, the sun protection factor (SPF) was calculated. The toxicity evaluation of LE included in vitro hemolytic assay and in vivo oral and dermal acute toxicity assays in Swiss mice. LE showed the highest protein, phenol, and flavonoid (8.79 mg/mL, 323.46 mg GAE/g, and 101.96 QE/g, respectively). TLC revealed the presence of flavonoids, reducing sugars, terpenes, and steroids in both extracts. In HPLC profiles, LE contained flavonoids, while SE contained flavonoids and ellagic tannins. The antioxidant activity assays showed the lowest IC50 values ​(34.15–413.3 µg/mL) for LE, which presented relevant SPF (> 6) at 50 and 100 µg/mL. LE demonstrated low hemolytic capacity, and no signs of intoxication were observed in mice treated orally or topically at 1000 mg/kg. However, at 2000 mg/kg, an increase in the mean corpuscular volume of erythrocytes and a reduction in lymphocytes were observed; animals treated topically with 2000 mg/kg displayed scratching behavior during the first hour of observation and showed edema and erythema that regressed after six days. In conclusion, LE did not present acute oral or dermal toxicity in Swiss mice at a dose of 1000 mg/kg and showed slight toxicity in animals treated with 2000 mg/kg.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Santos-Sánchez NF et al (2019) Antioxidant compounds and their antioxidant mechanism. In Shalaby E (ed), Antioxidants, IntechOpen, London. https://doi.org/10.5772/intechopen.85270

  2. Vellosa JCR et al (2021) Estresse oxidativo: uma introdução ao estado da arte. Brazilian Int J Dev 7:10152–10168. https://doi.org/10.34117/bjdv7n1-688

    Article  Google Scholar 

  3. Bouhajeb R et al (2020) Chemical composition analysis, antioxidant, and antibacterial activities of eggplant leaves. Chem Biodiver 17:e2000405. https://doi.org/10.1002/cbdv.202000405

    Article  CAS  Google Scholar 

  4. Radice M et al (2016) Herbal extracts, lichens and biomolecules as natural photo-protection alternatives to synthetic UV filters. A systematic review. Fitoterapia 114:144–162. https://doi.org/10.1016/j.fitote.2016.09.003

    Article  CAS  PubMed  Google Scholar 

  5. Silva NCS, Vítor AM, Bessa HHS, Barros RMS (2017) A utilização de plantas medicinais e fitoterápicos em prol da saúde.Única Cadernos Acadêmicos3

  6. Silva JDF et al (2019) Portulaca elatior root contains a trehalose-binding lectin with antibacterial and antifungal activities. Int J Biol Macromol 126:291–297. https://doi.org/10.1016/j.ijbiomac.2018.12.188

    Article  CAS  PubMed  Google Scholar 

  7. Silva SP, Silva JDF, Costa CBL et al (2021) Purification, characterization, and assessment of antimicrobial activity and toxicity of Portulaca elatior leaf lectin (PeLL). https://doi.org/10.1007/s12602-021-09837-w. Probiotics Antimicrob Prot

  8. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin-Phenol reagent. J Biol Chem 193:265–276. https://doi.org/10.1016/S0021-9258(19)52451-6

    Article  CAS  PubMed  Google Scholar 

  9. Singleton VL, Rossi JA (1965) Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 16:144–158

    CAS  Google Scholar 

  10. Woisky RG, Salatino A (1998) Analysis of propolis: some parameters and procedures for chemical quality control. J Apic Res 37:99–105. https://doi.org/10.1080/00218839.1998.11100961

    Article  CAS  Google Scholar 

  11. Young IS (2001) Measurement of total antioxidant capacity. J Clin Pathol 54:339. https://doi.org/10.1136/jcp.54.5.339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mishra K, Ojha H, Chaudhury NK (2012) Estimation of antiradical properties of antioxidants using DPPH- assay: a critical review and results. Food Chem 130:1036–1043. https://doi.org/10.1016/j.foodchem.2011.07.127

    Article  CAS  Google Scholar 

  13. Nenadis N, Wang LF, Tsimidou M, Zhang HY (2004) Estimation of scavenging activity of phenolic compounds using the ABTS + assay. J Agric Food Chem 52:4669–4674. https://doi.org/10.1021/jf0400056

    Article  CAS  PubMed  Google Scholar 

  14. Mansur JDS et al (1986) Determinação do fator de proteção solar por espectrofotometria. An Bras Dermatol 61:121–124

    Google Scholar 

  15. Malagoli D (2007) A full-length protocol to test hemolytic activity of palytoxin on human erythrocytes. Invertebr Surviv J 4:92–94

    Google Scholar 

  16. OECD (2002) Test No. 423: Acute oral toxicity - acute toxic class Method, OECD Guidelines for the testing of Chemicals, Sect. 4. OECD Publishing, Paris. https://doi.org/10.1787/978926407

    Book  Google Scholar 

  17. OECD (2017) Test No. 402: Acute dermal toxicity, OECD Guidelines for the testing of Chemicals, Sect. 4. OECD Publishing, Paris. https://doi.org/10.1787/9789264070585-en

    Book  Google Scholar 

  18. Malone MH (1977) Pharmacological approaches to natural product screening and evaluation. New natural products and plant drugs with pharmacological, biological or therapeutical activity. Springer, Berlin, Heidelberg, pp 23–53

    Chapter  Google Scholar 

  19. Gnanadhas DP, Thomas M, Thomas R, Raichur AM, Chakravortty D (2013) Interaction of silver nanoparticles with serum proteins affects their antimicrobial activity in vivo. Antimicrob Agents Chemother 57:4945–4955. https://doi.org/10.1128/AAC.00152-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Calderon LA, Sobrinho JC, Zaqueo KD, Moura AA, Grabner AN, Mazzi MV, Marcussi S, Nomizo A, Fernandes CFC, Zuliani JP, Carvalho BMA, Siares AM (2014) Antitumoral activity of snake venom proteins: New trends in cancer therapy. Biomed Res Int 2014:203639. https://doi.org/10.1155/2014/20363

  21. Sahin B et al (2018) Characterization of Bacillus thuringiensis isolates by their insecticidal activity and their production of Cry and Vip3 proteins. PLoS ONE 13:e0206813. https://doi.org/10.1371/journal.pone.0206813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Verma AK, Chatli MK, Kumar P, Mehta N (2019) Antioxidant and antimicrobial activity of porcine liver hydrolysate in meat emulsion and their influence on physico-chemical and color deterioration during refrigeration storage. J Food Sci 84:1844–1853. https://doi.org/10.1111/1750-3841.14683

    Article  CAS  PubMed  Google Scholar 

  23. Campos MTG, Leme FOP (2018) Estresse oxidativo: fisiopatogenia e diagnóstico laboratorial. Pubvet 12:1–8. https://doi.org/10.22256/pubvet.v12n1a10.1-8

    Article  Google Scholar 

  24. Luna-Vital DA, Mojica L, Mejía EG, Mendoza S, Loarca-Piña G (2015) Biological potential of protein hydrolysates and peptides from common bean (Phaseolus vulgaris L.): a review. Food Res Int 76:39–50. https://doi.org/10.1016/j.foodres.2014.11.024

    Article  CAS  Google Scholar 

  25. Zhang J et al (2009) Antioxidant activities of the rice endosperm protein hydrolysate: identification of the active peptide. Eur Food Res Technol 229:709–719. https://doi.org/10.1007/s00217-009-1103-3

    Article  CAS  Google Scholar 

  26. Gao S et al (2020) Effects of dietary supplementation of natural astaxanthin from Haematococcus pluvialis on antioxidant capacity, lipid metabolism, and accumulation in the egg yolk of laying hens. Poult Sci 99:11:5874–5882. https://doi.org/10.1016/j.psj.2020.08.029

    Article  CAS  Google Scholar 

  27. Vieira DS et al (2021) Atividades biológicas: anti-infecciosa, antioxidante e cicatrizante da espécie vegetal Jatropha multifida. Rev Bras Enferm 74. https://doi.org/101590/0034-7167-2020-0451

  28. Santos JL et al (2020) Probing structural properties and antioxidant activity mechanisms for eleocarpanthraquinone. J Mol Model 26:1–8. https://doi.org/10.1007/s00894-020-04469-3

    Article  CAS  Google Scholar 

  29. Olszowy M (2019) What is responsible for antioxidant properties of polyphenolic compounds from plants? Int J Plant Physiol Biochem 144:135–143. https://doi.org/10.1016/j.plaphy.2019.09.039

    Article  CAS  Google Scholar 

  30. Ifeanyi OE (2018) A review on free radicals and antioxidants. Int J Curr Res Med Sc 4:123–133. https://doi.org/10.22192/ijcrms.2018.04.02.019

    Article  Google Scholar 

  31. Souza JC, Rescarolli CLS, Nunez CV (2018) Produção de metabólitos secundários por meio da cultura de tecidos vegetais. Revista Fitos 12:269. https://doi.org/10.17648/2446-4775.2018.550

    Article  Google Scholar 

  32. Addor FAS et al (2022) Sunscreen lotions in the dermatological prescription: review of concepts and controversies. An Bras Dermatol 97:204–222. https://doi.org/10.1016/j.abd.2021.05.012

    Article  PubMed  PubMed Central  Google Scholar 

  33. Elmastas M et al (2018) Antioxidant activity of an anatolian herbal tea—Origanum minutiflorum: isolation and characterization of its secondary metabolites. Int J Food Prop 21:374–384. https://doi.org/10.1080/10942912.2017.1416399

    Article  CAS  Google Scholar 

  34. Saewan N, Jimtaisong A (2013) Photoprotection of natural flavonoids. J Appl Pharm Sci 9:129–141. https://doi.org/10.7324/JAPS.2013.3923

    Article  CAS  Google Scholar 

  35. Nunes AR et al (2018) Use of flavonoids and cinnamates, the main photoprotectors with natural origin. Adv Pharmacol Sci 2018: 5341487 https://doi.org/10.1155/2018/5341487

  36. Saewan N, Jimtaisong A (2015) Natural products as photoprotection. J Cosmet Dermatol 14:47–63. https://doi.org/10.1111/jocd.12123

    Article  PubMed  Google Scholar 

  37. Gontijo DC, Nunes LG, Farias LM, Duarte MGR, Carvalho AF, Fietto LG, Leite JPV (2020) Assessment of the phenolic content, mutagenicity and genotoxicity of ethanolic extracts of stem bark and leaves from Strychnos pseudoquina A. St.-hil. Drug Chem Toxicol 43:539–545. https://doi.org/10.1080/01480545.2018.1515218

    Article  CAS  PubMed  Google Scholar 

  38. Ghosh T, Biswas MK, Roy P, Guin C (2018) A review on traditional and pharmacological uses of Croton bonplandianum with special reference to phytochemical aspect. Eur J Med Plants 22:1–10. https://doi.org/10.9734/EJMP/2018/40697

    Article  Google Scholar 

  39. Cordeiro BMPC, Carvalho Junior AR, Santos JRA, Araujo AD, Silva AG, Correia MTS, Silva MV, Napoleão TH, Silva LCN, Santos NDL, Paiva PMG (2020) Anticryptococcal activity of hexane extract from Spondias tuberosa Arruda and associated cellular events. J Mycol Med 30:100965. https://doi.org/10.1016/j.mycmed.2020.100965

    Article  CAS  PubMed  Google Scholar 

  40. Rashid MA et al (2018) Chemical composition and antioxidant, antimicrobial and haemolytic activities of Crambe cordifolia roots. Farmacia 66:165–171

    CAS  Google Scholar 

  41. Chaudhuri S et al (2007) Interaction of flavonoids with red blood cell membrane lipids and proteins: antioxidant and antihemolytic effects. Int J Biol Macromol 41:42–48. https://doi.org/10.1016/j.ijbiomac.2006.12.003

    Article  CAS  PubMed  Google Scholar 

  42. Alinezhad H, Azimi R, Zare M, Ebrahimzadeh MA, Eslami S, Nabavi SE, Nabavi SM (2013) Antioxidant and antihemolytic activities of ethanolic extract of flowers, leaves, and stems of Hyssopus officinalis L. var. angustifolius. Int J Food Prop 16:1169–1178. https://doi.org/10.1080/10942912.2011.578319

    Article  CAS  Google Scholar 

  43. Teke GN, Kuete V (2014) Acute and subacute toxicities of African medicinal plants. In: Kuete V (ed) Toxicological Survey of African Medicinal Plants, Elsevier, pp. 63–98. https://doi.org/10.1016/B978-0-12-800018-2.00005-4

  44. Maner BS, Moosavi L (2022) Mean Corpuscular volume. StatPearls [Internet]. StatPearls Publishing, Treasure Island (FL)

    Google Scholar 

  45. Failace R (2015) Hemograma: manual de interpretação. Artmed Editora, Rio de Janeiro

    Google Scholar 

  46. Arsanios DM et al (2021) Criptococosis y linfocitopenia T CD4 idiopática: Reporte de un caso. Infectio 25:49–54. https://doi.org/10.22354/in.v25i1.909

    Article  Google Scholar 

  47. Cataldo F, Warleu F, Otero V, Kohan D, Odstrcil S, Brulc E (2021) Linfoma T/NK EBER positivo en paciente con linfocitopenia CD4 idiopática. Medicina 81:458–461

    PubMed  Google Scholar 

  48. Licata A (2016) Adverse drug reactions and organ damage: the liver. Eur J Int Med 28:9–16. https://doi.org/10.1016/j.ejim.2015.12.017

    Article  CAS  Google Scholar 

  49. Almazroo O, Abdulhameed M, Mohammad K, Venkataramanan R (2020) Drug metabolism in the liver. Clin Liver Dis 21:1–20. https://doi.org/10.1016/j.cld.2016.08.001

    Article  Google Scholar 

  50. Anusha M, Venkateswarlu M, Prabhakaran V, Taj SS, Kumari BP, Ranganayakulu D (2011) Hepatoprotective activity of aqueous extract of Portulaca oleracea in combination with lycopene in rats. Indian J Pharmacol 43:563. https://doi.org/10.4103/0253-7613.84973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Galiza GJ, Pimentel LA, Oliveira DM, Pierezan F, Dantas AF, Medeiros RM, Riet-Correa F (2011) Intoxicação por Portulaca elatior (Portulacaceae) em caprinos. Pesq Vet Bras 31:465–470. https://doi.org/10.1016/j.ijbiomac.2018.12.188

    Article  CAS  Google Scholar 

  52. Oliveira Neto TS et al (2017) Intoxicação por Portulaca elatior (Portulacaceae) em bovinos. Pesq Vet Bras 37:785–789. https://doi.org/10.1590/s0100-736x2017000800001

    Article  Google Scholar 

  53. Shingade GM (2012) Review on: recent trend on transdermal drug delivery system. J Drug Deliv Ther 2:10–18. https://doi.org/10.22270/jddt.v2i1.74

    Article  Google Scholar 

  54. Jin SE, Kim EJ, Kim H, Kim H, Hwang W (2020) In vitro and in vivo toxicological evaluation of transition metal-doped titanium dioxide nanoparticles: Nickel and platinum. Mater Sci Eng C 115:110843. https://doi.org/10.1016/j.msec.2020.110843

    Article  CAS  Google Scholar 

  55. Novak-Bilić G et al (2018) Irritant and allergic contact dermatitis–skin lesion characteristics. Acta Clin Croat 57:713–719. https://doi.org/10.20471/acc.2018.57.04.13

    Article  PubMed  PubMed Central  Google Scholar 

  56. Junlatat J et al (2014) Hair growth-promoting effect of Carthamus tinctorius Floret extract. Phytother Res 28:1030–1036. https://doi.org/10.1002/ptr.5100

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for financial support (407192/2018–2) and investigator research grants (PMGP and THN). We are also grateful to the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES; Finance Code 001) and the Fundação de Amparo à Ciência e Tecnologia do Estado de Pernambuco (FACEPE: APQ 0108–2.08/14) for financial support. SPS would like to thank CAPES for the graduate scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thiago Henrique Napoleão.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, S.P., da Costa, C.B.L., de Freitas, A.F.S. et al. Saline extract of Portulaca elatior leaves with photoprotective and antioxidant activities does not show acute oral and dermal toxicity in mice. Toxicol Res. 39, 179–190 (2023). https://doi.org/10.1007/s43188-022-00160-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43188-022-00160-2

Keywords

Navigation