Skip to main content
Log in

Novel Concave Hull-Based Heuristic Algorithm For TSP

  • Original Research
  • Published:
Operations Research Forum Aims and scope Submit manuscript

Abstract

We presented a novel deterministic concave hull-based heuristic algorithm for Euclidean symmetric TSP (Traveling Salesman Problem). The algorithm iteratively creates concentric concave hulls and in a heuristic way merges them into a single tour. We introduced a new metric called the Average Waiting Distance (AWD) of a tour which is an important optimization objective concerning the “cities.” Related to AWD, we also introduced another new metric called “min AWD” of a tour which is the minimum AWD when all the “rotations” and “directions” of a tour are considered. In experiments, we saw that the cost-optimum tour known so far does not guarantee optimum AWD or optimum min AWD. Benchmarks are carried out including various standard approximation algorithms by using standard TSPLIB and custom datasets. We performed preliminary statistical analysis on the datasets for classification purposes. The proposed algorithm offered a balanced compromise in performance metrics considered in the benchmarks compared to other algorithms. Especially for the lattice-based (hex) configuration of the cities, the proposed algorithm performed better in finding the shortest TSP tour with minimum AWD and with shorter running time. We investigated the percentages of the edges in the optimum and in the approximate TSP tours that are coming from the Delaunay Triangulation. Quantitative analysis is carried out, and the savings from the proposed heuristics are tabulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Availability of Data and Material

Codes, detailed results, and datasets on our GitHub: https://github.com/kk-1/tsp

Code Availability

Codes, detailed results, and datasets on our GitHub: https://github.com/kk-1/tsp

Notes

  1. http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsp/index.html

  2. Based on the comments at https://www.ics.uci.edu/~eppstein/junkyard/dt-not-tsp.html

  3. tsp data: http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsp/index.htmlberlin52.tsp.gz, optimum tour: http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsp/index.htmlberlin52.opt.tour.gz

  4. http://www.or.uni-bonn.de/~hougardy/HardTSPInstances.html

  5. Codes, results, and datasets https://github.com/kk-1/tsp

  6. https://github.com/kk-1/tsp/raw/master/datasets-hist-vtx-plots-V4.pdf

References

  1. Karp RM (1972) Reducibility among Combinatorial Problems. In: Miller RE, Thatcher JW, Bohlinger JD (eds) Complexity of Computer Computations: Proceedings of a symposium on the Complexity of Computer Computations, 1972. Springer US, Boston, MA, pp 85–103. https://doi.org/10.1007/978-1-4684-2001-2_9

  2. Jünger M, Reinelt G, Rinaldi G (1995) Chapter 4: The traveling salesman problem. In: MO Ball, TL Magnanti, CL Monma and GL Nemhauser (ed) Network Models, Handbooks in Operations Research and Management Science, vol 7. Elsevier, pp 225–330. https://doi.org/10.1016/S0927-0507(05)80121-5

  3. Matai R, Singh SP, Mittal ML (2010) Chapter 1: Traveling salesman problem: an overview of applications, formulations, and solution approachess. In: Donald D (ed) Traveling Salesman Problem: Theory and Applications, IntechOpen. https://doi.org/10.5772/12909

  4. Punnen AP (2007) The traveling salesman problem: applications, formulations and variations. In: Gutin G, Punnen AP (eds) The Traveling Salesman Problem and Its Variations. Springer US, Boston, MA, pp 1–28. https://doi.org/10.1007/0-306-48213-4_1

  5. Kilic KI, Mostarda L (2021) Optimum path finding framework for drone assisted boat rescue missions. In: Barolli L, Woungang I, Enokido T (eds) Advanced Information Networking and Applications. AIN 2021. Lecture Notes in Networks and Systems, vol 227. Springer International Publishing, pp 219–231. https://doi.org/10.1007/978-3-030-75078-7_23

  6. Kilic KI, Mostarda L (2021) Heuristic drone pathfinding over optimized charging station grid. IEEE Access 9:164,070–164,089. https://doi.org/10.1109/ACCESS.2021.3134459

  7. Flood MM (1956) The Traveling-Salesman Problem. Oper Res 4(1):61–75. http://www.jstor.org/stable/167517

  8. Park JS, Oh SJ (2013) A new concave hull algorithm and concaveness measure for n-dimensional datasets. J Inf Sci Eng 29(2):379–392

    Google Scholar 

  9. Croes GA (1958) A method for solving traveling-salesman problems. Oper Res 6(6):791–812. http://www.jstor.org/stable/167074

  10. Rosenkrantz DJ, Stearns RE, Lewis PM (2009) An analysis of several heuristics for the traveling salesman problem. In: Ravi SS, Shukla SK (eds) Fundamental Problems in Computing: Essays in Honor of Professor Daniel J. Rosenkrantz. Springer Netherlands, Dordrecht, pp 45–69. https://doi.org/10.1007/978-1-4020-9688-4_3

  11. Gutin G, Punnen AP (2007) The traveling salesman problem and Its variations. Springer-Verlag, US. https://doi.org/10.1007/b101971

  12. Fenton A (2016) The bees algorithm for the vehicle routing problem. Master’s thesis, Department of Computer Science, University of Auckland. http://arxiv.org/abs/1605.05448

  13. Englert M, Röglin H, Vöcking B (2014) Worst case and probabilistic analysis of the 2-opt algorithm for the TSP. Algorithmica 68(1):190–264. https://doi.org/10.1007/s00453-013-9801-4

    Article  Google Scholar 

  14. Punnen, Margot, Kabadi (2003) TSP Heuristics: domination analysis and complexity. Algorithmica 35(2):111–127. https://doi.org/10.1007/s00453-002-0986-1

  15. Bartholdi JJ, Platzman LK (1988) Heuristics based on spacefilling curves for combinatorial problems in euclidean space. Manag Sci 34(3):291–305. http://www.jstor.org/stable/2632046

  16. Platzman LK, Bartholdi JJ (1989) Spacefilling curves and the planar travelling salesman problem. Journal of the ACM 36(4):719–737. https://doi.org/10.1145/76359.76361

    Article  Google Scholar 

  17. Lin Y, Bian Z, Liu X (2016) Developing a dynamic neighborhood structure for an adaptive hybrid simulated annealing - Tabu search algorithm to solve the symmetrical traveling salesman problem. Appl Soft Comput 49:937–952. https://doi.org/10.1016/j.asoc.2016.08.036

    Article  Google Scholar 

  18. Wang J, Ersoy OK, He M, Wang F (2016) Multi-offspring genetic algorithm and its application to the traveling salesman problem. Appl Soft Comput 43:415–423. https://doi.org/10.1016/j.asoc.2016.02.021

    Article  Google Scholar 

  19. Zhou AH, Zhu LP, Hu B, Deng S, Song Y, Qiu H, Pan S (2019) Traveling-salesman-problem algorithm based on simulated annealing and gene-expression programming. Information 10(1). https://doi.org/10.3390/info10010007

  20. Adamatzky A (2012) Slime mould computes planar shapes. International Journal of Bio-Inspired Computation 4(3):149–155. https://doi.org/10.1504/IJBIC.2012.047239

    Article  Google Scholar 

  21. Duckham M, Kulik L, Worboys M, Galton A (2008) Efficient generation of simple polygons for characterizing the shape of a set of points in the plane. Pattern Recogn 41(10):3224–3236. https://doi.org/10.1016/j.patcog.2008.03.023

    Article  Google Scholar 

  22. Galton A, Duckham M (2006) What Is the Region Occupied by a Set of Points? In: Raubal M, Miller HJ, Frank AU, Goodchild MF (eds) Geographic Information Science. Springer Berlin Heidelberg, pp 81–98. https://doi.org/10.1007/11863939_6

  23. Deineko VG, van Dal R, Rote G (1994) The convex-hull-and-line traveling salesman problem: a solvable case. Information Processing Letters 51(3):141–148. https://doi.org/10.1016/0020-0190(94)00071-9

    Article  Google Scholar 

  24. Deineko VG, Woeginger GJ (1996) The Convex-hull-and-k-line travelling salesman problem. Inf Process Lett 59(6):295–301. https://doi.org/10.1016/0020-0190(96)00125-1

    Article  Google Scholar 

  25. Jones J, Adamatzky A (2014) Computation of the travelling salesman problem by a shrinking blob. Nat Comput 13(1):1–16. https://doi.org/10.1007/s11047-013-9401-x

    Article  Google Scholar 

  26. Gombin J, Vaidyanathan R, Agafonkin V (2020) concaveman: A very fast 2D concave hull algorithm, R package version 1.1.0. https://CRAN.R-project.org/package=concaveman

  27. Moreira A, Santos MY (2007) Concave Hull: A K-nearest neighbours approach for the computation of the region occupied by a set of points. In: GRAPP 2007 - International Conference on Computer Graphics Theory and Applications. pp 61–68

  28. Chazelle B (1985) On the convex layers of a planar set. IEEE Trans Inf Theory 31(4):509–517. https://doi.org/10.1109/TIT.1985.1057060

    Article  Google Scholar 

  29. Dillencourt MB (1996) Finding Hamiltonian cycles in Delaunay triangulations is NP-complete. Discret Appl Math 64(3):207–217. https://doi.org/10.1016/0166-218X(94)00125-W

    Article  Google Scholar 

  30. Letchford AN, Pearson NA (2008) Good triangulations yield good tours. Computers & Operations Research 35(2):638–647, Part Special Issue: Location Modeling Dedicated to the memory of Charles S. ReVelle. https://doi.org/10.1016/j.cor.2006.03.025

  31. Dillencourt MB (1987) Traveling salesman cycles are not always subgraphs of Delaunay triangulations or of minimum weight triangulations. Inf Process Lett 24(5):339–342. https://doi.org/10.1016/0020-0190(87)90160-8

    Article  Google Scholar 

  32. Kantabutra V (1983) Traveling salesman cycles are not always subgraphs of Voronoi duals. Inf Process Lett 16(1):11–12. https://doi.org/10.1016/0020-0190(83)90004-2

    Article  Google Scholar 

  33. Lianshuan S, Zengyan L (2009) An improved pareto genetic algorithm for multi-objective TSP. In: 2009 Fifth International Conference on Natural Computation, vol 4. pp 585–588. https://doi.org/10.1109/ICNC.2009.510

  34. Manthey B, Shankar Ram L (2009) Approximation algorithms for multi-criteria traveling salesman problems. Algorithmica 53(1):69–88. https://doi.org/10.1007/s00453-007-9011-z

    Article  Google Scholar 

  35. Lust T, Teghem J (2010) The multiobjective traveling salesman problem: a survey and a new approach. Springer Berlin Heidelberg, pp 119–141. https://doi.org/10.1007/978-3-642-11218-8_6

  36. Baddeley A, Turner R (2005) spatstat: An R package for analyzing spatial point patterns. J Stat Softw 12(6):1–42. http://dx.doi.org/10.18637/jss.v012.i06

  37. Dillencourt WD Michael Band Smith (1993) A simple method for resolving degeneracies in Delaunay triangulations. In: Lingas A, Karlsson R, Carlsson S (eds) Automata, Languages and Programming, ICALP 1993. Lecture Notes in Computer Science, vol 700. Springer Berlin Heidelberg, pp 177–188. https://doi.org/10.1007/3-540-56939-1_71

  38. Khanimov M, Sharir M (2015) Delaunay triangulations of degenerate point sets. CoRR abs/1510.04608

  39. Beatriz Pateiro-Lopez and Alberto Rodriguez-Casal (2019) alphahull: Generalization of the convex hull of a sample of points in the plane R package version 2.2. https://CRAN.R-project.org/package=alphahull

  40. Becker A, Fox-Epstein E, Klein PN, Meierfrankenfeld D (2017) Engineering an approximation scheme for traveling salesman in planar graphs. In: Iliopoulos CS, Pissis SP, Puglisi SJ, Raman R (eds) 16th International Symposium on Experimental Algorithms (SEA 2017), vol 75. pp 8:1–8:17. https://doi.org/10.4230/LIPIcs.SEA.2017.8

  41. Izrailev S (2021) tictoc: Functions for Timing R Scripts, as Well as Implementations of Stack and List Structures, R package version 1.0.1. https://CRAN.R-project.org/package=tictoc

  42. Hahsler M, Hornik K (2007) TSP - Infrastructure for the traveling salesperson problem. J Stat Softw 23(2):1–21. https://doi.org/10.18637/jss.v023.i02

    Article  Google Scholar 

  43. Hougardy S, Zhong X (2021) Hard to solve instances of the Euclidean Traveling Salesman Problem. Math Program Comput 13:51–74. https://doi.org/10.1007/s12532-020-00184-5

    Article  Google Scholar 

  44. Doddapaneni K, Tasiran A, Omondi FA, Ever E, Shah P, Mostarda L, Gemikonakli O (2018) Does the assumption of exponential arrival distributions in wireless sensor networks hold? International Journal of Sensor Networks (IJSNET) 26(2):81–100. https://dx.doi.org/10.1504/IJSNET.2018.089258

  45. Delignette-Muller ML, Dutang C (2015) fitdistrplus: An R Package for fitting distributions. J Stat Softw 64(4):1–34. https://www.jstatsoft.org/v64/i04/

  46. Cullen AC, Frey HC (1999) Probabilistic techniques in exposure assessment: a handbook for dealing with variability and uncertainty in models and inputs. Plenum Press, USA

    Google Scholar 

  47. Christofides N (2021) Worst-case analysis of a new heuristic for the travelling salesman problem. Operations Research Forum 3(2). https://doi.org/10.1007/s43069-021-00101-z

Download references

Acknowledgements

The authors are very grateful to the reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kemal Ihsan Kilic.

Ethics declarations

Conflicts of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ihsan Kilic, K., Mostarda, L. Novel Concave Hull-Based Heuristic Algorithm For TSP. Oper. Res. Forum 3, 25 (2022). https://doi.org/10.1007/s43069-022-00137-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43069-022-00137-9

Keywords

Navigation