Skip to main content
Log in

Global behavior and nontrivial solutions for discrete Sturm–Liouville problems with eigenparameter-dependent boundary condition

  • Original Paper
  • Published:
Annals of Functional Analysis Aims and scope Submit manuscript

Abstract

In this article, we consider a Dancer-type unilateral global bifurcation for the discrete Sturm-Liouville problem

$$\begin{aligned} \left\{ \begin{array}{ll} -\nabla (p(t)\Delta u(t))+q(t)u(t)=\lambda h(t)u(t)+g(t,u(t),\lambda ),\ \ \ \ t\in [1,T]_Z,\\ \quad b_1u(0)=d_1\Delta u(0),\\ \quad (c\lambda +b_2)u(T+1)=(c\lambda +d_2)\nabla u(T+1), \end{array}\right. \end{aligned}$$

where \(\lambda \in {\mathbb {R}}\) is a spectral parameter, \(T>1\) is an integer, Z is the set of integers, for \(a, b\in Z\) with \(a<b\), \([a, b]_{Z}:=\{a, a+1,\ldots , b\}\). Under natural hypotheses on g, we prove that \((\lambda _{k,h},0)\) is a bifurcation point of the above problem. As applications, we determine the interval of \(\lambda\), in which there exist nontrivial solutions for the discrete Sturm-Liouville problem

$$\begin{aligned} \left\{ \begin{array}{ll} -\nabla (p(t)\Delta u(t))+q(t)u(t)=\lambda h(t)u(t)+\lambda f(t,u(t)),\ \ \ \ t\in [1,T]_Z,\\ \quad b_1u(0)=d_1\Delta u(0),\\ \quad (c\lambda +b_2)u(T+1)=(c\lambda +d_2)\nabla u(T+1), \end{array}\right. \end{aligned}$$

where \(p:[0,T]_Z\rightarrow (0,+\infty )\), \(q:[1,T]_Z\rightarrow {\mathbb {R}}\), \(h:[1,T]_Z\rightarrow (0,+\infty )\), \(f\in C([1,T]_Z\times {\mathbb {R}}, {\mathbb {R}})\). We prove that, under some suitable assumptions on nonlinear terms, there exist two unbounded continua of nontrivial solutions of the above problem which bifurcate from the line of trivial solutions or from infinity, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated.

References

  1. Aliyev, Z.S., Mamedova, G.M.: Some global results for nonlinear Sturm–Liouville problems with spectral parameter in the boundary condition. Ann. Pol. Math. 115(1), 75–87 (2015)

    Article  MathSciNet  Google Scholar 

  2. Berestycki, H.: On some nonlinear Sturm–Liouville problems. J. Differ. Equ. 26(3), 375–390 (1977)

    Article  MathSciNet  Google Scholar 

  3. Cheng, X., Dai, G.: Positive solutions of sub-superlinear Sturm–Liouville problems. Appl. Math. Comput. 261, 351–359 (2015)

    MathSciNet  MATH  Google Scholar 

  4. Coddington, E.A., Levinson, N.: Theory of Ordinary Differential Equations. McGraw-Hill Book Company Inc, New York (1955)

    MATH  Google Scholar 

  5. Dai, G.: Global bifurcation from intervals for Sturm–Liouville problems which are not linearizable. Electron. J. Qual. Theory Differ. Equ. 65, 1–7 (2013)

    Article  MathSciNet  Google Scholar 

  6. Dancer, E.N.: On the structure of solutions of non-linear eigenvalue problems. Indiana Univ. Math. J. 23, 1069–1076 (1973)

    Article  MathSciNet  Google Scholar 

  7. Gao, C., Ma, R.: Eigenvalues of discrete Sturm–Liouville problems with eigenparameter dependent boundary conditions. Linear Algebra Appl. 503, 100–119 (2016)

    Article  MathSciNet  Google Scholar 

  8. Kelley, W.G., Peterson, A.C.: Difference Equations, An Introduction with Applications, 2nd edn. Harcourt/Academic Press, San Diego (2001)

    MATH  Google Scholar 

  9. López-Gómez, J.: Spectral Theory and Nonlinear Functional Analysis. Chapman and Hall/CRC, Boca Raton (2001)

    Book  Google Scholar 

  10. Ma, R.: Bifurcation from infinity and multiple solutions for some discrete Sturm–Liouville problems. Comput. Math. Appl. 54(4), 535–543 (2007)

    Article  MathSciNet  Google Scholar 

  11. Ma, R., Ma, H.: Global structure of positive solutions for superlinear discrete boundary value problems. J. Differ. Equ. Appl. 17(9), 1219–1228 (2011)

    Article  MathSciNet  Google Scholar 

  12. Maroncelli, D., Rodríguez, J.: On the solvability of nonlinear discrete Sturm–Liouville problems at resonance. Int. J. Differ. Equ. 12(1), 119–129 (2017)

    MathSciNet  Google Scholar 

  13. Maroncelli, D.: Nonlinear scalar multipoint boundary value problems at resonance. J. Differ. Equ. Appl. 24(12), 1935–1952 (2018)

    Article  MathSciNet  Google Scholar 

  14. Rabinowitz, P.H.: On bifurcation from infinity. J. Differ. Equ. 14, 462–475 (1973)

    Article  MathSciNet  Google Scholar 

  15. Řehák, P.: Oscillatory properties of second order half-linear difference equations. Czech. Math. J. 51, 303–321 (2001)

    Article  MathSciNet  Google Scholar 

  16. Rodriguez, J.: Nonlinear discrete Sturm–Liouville problems. J. Math. Anal. Appl. 308(1), 380–391 (2005)

    Article  MathSciNet  Google Scholar 

  17. Whyburn, G.T.: Topological Analysis. Princeton University Press, Princeton (1958)

    MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the Key Project of Natural Sciences Foundation of Gansu Province (Grant No. 18JR3RA084).

Author information

Authors and Affiliations

Authors

Contributions

The authors claim that the research was realized in collaboration with the same responsibility. All authors read and approved the last version of the manuscript.

Corresponding author

Correspondence to Fumei Ye.

Ethics declarations

Conflicts of interest

All authors declare no conflicts of interest.

Additional information

Communicated by Manuel D. Contreras.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, F., Han, X. & Gao, C. Global behavior and nontrivial solutions for discrete Sturm–Liouville problems with eigenparameter-dependent boundary condition. Ann. Funct. Anal. 13, 8 (2022). https://doi.org/10.1007/s43034-021-00153-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43034-021-00153-6

Keywords

Mathematics Subject Classification

Navigation