Skip to main content
Log in

The magnetic discrete Laplacian inferred from the Gauß–Bonnet operator and application

  • Original Paper
  • Published:
Annals of Functional Analysis Aims and scope Submit manuscript

Abstract

We consider the notion of \(\chi\)-completeness of a locally finite graph and we extend this notion to the weighted magnetic graph. Moreover, we establish a link between the magnetic adjacency matrix on line graph and the magnetic discrete Laplacian on 1-forms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anné, C., Torki-Hamza, N.: The Gauss–Bonnet operator of an infinite graph. Anal. Math. Phys. 5(2), 137–159 (2015)

    Article  MathSciNet  Google Scholar 

  2. Ayadi, H.: Spectra of Laplacians on forms an infinite graph. Oper. Matrices 11(2), 567–586 (2017)

    Article  MathSciNet  Google Scholar 

  3. Baloudi, H., Belgacem, S., Jeribi, A.: The discrete Laplacian acting on 2-forms and application. Bull. Malays. Math. Sci. Soc. 43(2), 1025–1045 (2020)

    Article  MathSciNet  Google Scholar 

  4. Baloudi, H., Golenia, S., Jeribi, A.: The adjacency matrix and the discrete Laplacian acting on forms. Math. Phys. Anal. Geom. 22(1), Paper No. 9, 27 p. (2019)

  5. Bonnefont, M., Golénia, S.: Essential spectrum and Weyl asymptotics for discrete Laplacians. Ann. Fac. Sci. Toulouse Math. 24(3), 563–624 (2015)

    Article  MathSciNet  Google Scholar 

  6. Chebbi, Y.: The Discrete Laplacian of a \(2\)-Simplicial Complex. Potential Anal. 49(2), 331–358 (2018)

    Article  MathSciNet  Google Scholar 

  7. Chung, F.R.K.: Spectral Graph Theory, Reg. conf. Ser. Math., vol. 92. American Mathematical Society, Providence, RI (1997)

  8. Colin de Verdière, Y.: Théorème de Kirchhoff et théorie de Hodge. Sémin. Théor. Spectr. Géom., vol. 9. Univ. Grenoble I, Saint-Martin-d’Hères (1991)

  9. Colin de Verdière, Y.: Spectres de Graphes, Cours Spécialisés, vol. 4, pp. viii+114. Société Mathématique de France, Paris (1998)

  10. Colin de Verdière, Y., Torki-Hamza, N., Truc, F.: Essential self-adjointness for combinatorial Schrödinger operators II: geometrically non complete graphs. Math. Phys. Anal. Geom. 14(1), 21–38 (2011)

    Article  MathSciNet  Google Scholar 

  11. Colin De Verdière, Y., Torki-Hamza, N., Truc, F.: Essential self-adjointness for combinatorial Schrödinger operators III-Magnetic fields, Ann. Fac. Sci. Toulouse Math. (6), vol. 20, no. 3, pp. 599–611 (2011)

  12. Cvetković, D.C., Sinić, S.K.: Towards a spectral theory of graphs based on the signless Laplacian. II. Linear Algebra Appl. 432(9), 2257–2272 (2010)

    Article  MathSciNet  Google Scholar 

  13. Danijela, H., Jost, J.: Spectra of combinatorial Laplace operators on simplicial complexes. Adv. Math. 244, 303–336 (2013)

    Article  MathSciNet  Google Scholar 

  14. Davidoff, G., Sarnak, P., Valette, A.: Elementary Number Theory, Group Theory, and Ramanujan Graphs, London Mathematical Society Student Texts, vol. 55, pp. x+144. Cambridge University Press, Cambridge (2003)

  15. Doyle, P.G., Snell, J.L.: Random Walks and Electric Networks, Carus Mathematical Monographs, vol. 22, pp. xiv+159. Mathematical Association of America, Washington, DC (1984) 

  16. Duval, A.M., Klivans, C.J., Martin, J.L.: Critical groups of simplicial complexes. Ann. Comb. 17(1), 53–70 (2013)

    Article  MathSciNet  Google Scholar 

  17. Golénia, S.: Hardy inequality and asymptotic eigenvalue distribution for discrete Laplacians. J. Funct. Anal. 266(5), 2662–2688 (2014)

    Article  MathSciNet  Google Scholar 

  18. Golénia, S.: Unboundedness of adjacency matrices of locally finite graphs. Lett. Math. Phys. 93(2), 127–140 (2010)

    Article  MathSciNet  Google Scholar 

  19. Golénia, S., Truc, F.: The magnetic Laplacian acting on discrete cusps. Doc. Math. 22, 1709–1727 (2017)

    MathSciNet  MATH  Google Scholar 

  20. Higuchi, Y., Shirai, T.: Weak Bloch property for discrete magnetic Schrödinger operators. Nagoya Math. J. 161, 127–154 (2001)

    Article  MathSciNet  Google Scholar 

  21. Huang, X., Keller, M., Masamune, J., Wojciechowski, R.K.: A note on selfadjoint extensions of the Laplacian on weighted graphs. J. Funct. Anal. 265(8), 1556–1578 (2013)

    Article  MathSciNet  Google Scholar 

  22. Jeribi, A.: Spectral Theory and Applications of Linear Operators and Block Operator Matrices. Springer, New York (2015)

    Book  Google Scholar 

  23. Kato, T.: Perturbation Theory for Linear Operators. Classics in Mathematics, pp. xxii+619. Springer, Berlin (1995)

  24. Lim, L.H.: Hodge Laplacians on graphs, Geometry and Topology in Statistical Inference, Proceedings of Symposia in Applied Mathematics, 73. AMS, Providence, RI (2015)

    Google Scholar 

  25. Masamune, J.: A Liouville property and its application to the Laplacian of an infinite graph. In: Kotani, M. (ed.) Spectral analysis in geometry and number theory. Contemporary mathematics, vol. 484, p. 103. American Mathematical Society, Providence (2009)

  26. Milatovic, O.: Essential self-adjointness of magnetic Schrödinger operators on locally finite graphs. Integr. Equations Oper. Theory 71(1), 13–27 (2011)

    Article  MathSciNet  Google Scholar 

  27. Milatovic, O.: A Sears-type self-adjointness result for discrete magnetic Schrödinger operators. J. Math. Anal. Appl. 396(2), 801–809 (2012)

    Article  MathSciNet  Google Scholar 

  28. Milatovic, O., Françoise, T.: Self-adjoint extensions of discrete magnetic Schrödinger operators. Ann. Henri Poincaré 15(5), 917–936 (2014)

    Article  MathSciNet  Google Scholar 

  29. Mohar, B., Omladic, M.: The spectrum of infinite graphs with bounded vertex degrees, Graphs, hypergraphs and applications (Eyba, 1984), Teubner-Texte Math., vol. 73, pp. 122–125. Teubner, Leipzig (1985)

  30. Mohar, B., Woess, W.: A survey on spectra of infinite graphs. J. Bull. Lond. Math. Soc. 21(3), 209–234 (1989)

    Article  MathSciNet  Google Scholar 

  31. Reed, M., Simon, B.: Methods of Modern Mathematical Physics vol. I–IV. Academic Press, New York (1978)

    MATH  Google Scholar 

  32. Schmidt, M.: On the existence and uniqueness of self-adjoint realizations of discrete (magnetic) Schroödinger operators (2020). arXiv:1805.08446 [math.FA]

  33. Shirai, T.: The spectrum of infinite regular line graphs. Trans. Am. Math. Soc. 352(1), 115–132 (2000)

    Article  MathSciNet  Google Scholar 

  34. Torki-Hamza, N.: Laplaciens de graphes infinis (I-graphes) métriquement complets. Conflu. Math. 2(3), 333–350 (2010)

    Article  MathSciNet  Google Scholar 

  35. Weber, A.: Analysis of the physical Laplacian and the heat flow on a locally finite graph. J. Math. Anal. Appl. 370(1), 146–158 (2010)

    Article  MathSciNet  Google Scholar 

  36. Wojciechowski, R.: Stochastic compactetness of graph, Ph.D. thesis, City University of New York, p. 72 (2007)

Download references

Acknowledgements

The authors thank Sylvain Golénia and Mahmoud Ahmadi for their useful remarks and comments on the text. We wish to express our indebtedness to the referees for their suggestions that have improved significantly the final presentation of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hatem Baloudi.

Additional information

Communicated by Marcel de Jeu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Athmouni, N., Baloudi, H., Damak, M. et al. The magnetic discrete Laplacian inferred from the Gauß–Bonnet operator and application. Ann. Funct. Anal. 12, 33 (2021). https://doi.org/10.1007/s43034-021-00119-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43034-021-00119-8

Keywords

Mathematics Subject Classification

Navigation