Skip to main content
Log in

Critical Groups of Simplicial Complexes

  • Published:
Annals of Combinatorics Aims and scope Submit manuscript

Abstract

We generalize the theory of critical groups from graphs to simplicial complexes. Specifically, given a simplicial complex, we define a family of abelian groups in terms of combinatorial Laplacian operators, generalizing the construction of the critical group of a graph. We show how to realize these critical groups explicitly as cokernels of reduced Laplacians, and prove that they are finite, with orders given by weighted enumerators of simplicial spanning trees. We describe how the critical groups of a complex represent flow along its faces, and sketch another potential interpretation as analogues of Chow groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bacher R., de la Harpe P., Nagnibeda T.: The lattice of integral flows and the lattice of integral cuts on a finite graph. Bull. Soc. Math. France 125(2), 167–198 (1997)

    MathSciNet  MATH  Google Scholar 

  2. Baker M., Norine S.: Riemann-Roch and Abel-Jacobi theory on a finite graph. Adv. Math. 215(2), 766–788 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Biggs N.L.: Chip-firing and the critical group of a graph. J. Algebraic Combin. 9(1), 25–45 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Björner A., Lovász L., Shor P.W.: Chip-firing games on graphs. European J. Combin. 12(4), 283–291 (1991)

    MathSciNet  MATH  Google Scholar 

  5. Bolker E.D.: Simplicial geometry and transportation polytopes. Trans. Amer. Math. Soc. 217, 121–142 (1976)

    MathSciNet  MATH  Google Scholar 

  6. Christianson H., Reiner V.: The critical group of a threshold graph. Linear Algebra Appl. 349, 233–244 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dhar D.: Self-organized critical state of sandpile automaton models. Phys. Rev. Lett. 64(14), 1613–1616 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dodziuk J., Patodi V.K.: Riemannian structures and triangulations of manifolds. J. Indian Math. Soc. (N.S.) 40(1-4), 1–52 (1976)

    MathSciNet  MATH  Google Scholar 

  9. Dong, X., Wachs, M.L.: Combinatorial Laplacian of the matching complex. Electron. J. Combin. 9(1), #R17 (2002)

  10. Duval A.M., Klivans C.J., Martin J.L.: Simplicial matrix-tree theorems. Trans. Amer. Math. Soc. 361(11), 6073–6114 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Duval A.M., Klivans C.J., Martin J.L.: Cellular spanning trees and Laplacians of cubical complexes. Adv. Appl. Math. 46(1-4), 247–274 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Duval A.M., Reiner V.: Shifted simplicial complexes are Laplacian integral. Trans. Amer. Math. Soc. 354(11), 4313–4344 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Eckmann B.: Harmonische Funktionen und Randwertaufgaben in einem Komplex. Comment. Math. Helv. 17, 240–255 (1945)

    Article  MathSciNet  MATH  Google Scholar 

  14. Friedman J., Hanlon P.: On the Betti numbers of chessboard complexes. J. Algebraic Combin. 8(2), 193–203 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fulton W.: Intersection Theory. Springer-Verlag, Berlin (1998)

    Book  MATH  Google Scholar 

  16. Godsil C., Royle G.: Algebraic Graph Theory. Springer-Verlag, New York (2001)

    Book  MATH  Google Scholar 

  17. Grayson, D.R., Stillman, M.E.: Macaulay2, a software system for research in algebraic geometry. Available at http://www.math.uiuc.edu/Macaulay2.

  18. Haase C., Musiker G., Yu J.: Linear systems on tropical curves. Math. Z. 270(3-4), 1111–1140 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hartshorne R.: Algebraic Geometry. Springer-Verlag, New York-Heidelberg (1977)

    Book  MATH  Google Scholar 

  20. Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002) Available online at http://www.math.cornell.edu/~hatcher/AT/ATpage.html

  21. Jacobson B., Niedermaier A., Reiner V.: Critical groups for complete multipartite graphs and Cartesian products of complete graphs. J. Graph Theory 44(3), 231–250 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kalai G.: Enumeration of Q-acyclic simplicial complexes. Israel J. Math. 45(4), 337–351 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kook W., Reiner V., Stanton D.: Combinatorial Laplacians of matroid complexes. J. Amer. Math. Soc. 13(1), 129–148 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lang S.: Algebra. Addison-Wesley Pub. Co., Massachusetts (1993)

    MATH  Google Scholar 

  25. Levine L., Propp J.: What is . . . a sandpile? Notices Amer. Math. Soc. 57(8), 976–979 (2010)

    MathSciNet  MATH  Google Scholar 

  26. Lorenzini D.J.: Arithmetical graphs. Math. Ann. 285(3), 481–501 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lorenzini D.J.: A finite group attached to the Laplacian of a graph. Discrete Math. 91(3), 277–282 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  28. Maxwell M.: Enumerating bases of self-dual matroids. J. Combin. Theory Ser. A 116(2), 351–378 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Merris R.: Unimodular equivalence of graphs. Linear Algebra Appl. 173, 181–189 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  30. Musiker G.: The critical groups of a family of graphs and elliptic curves over finite fields. J. Algebraic Combin. 30(2), 255–276 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. Shokrieh F.: The monodromy pairing and discrete logarithm on the Jacobian of finite graphs. J. Math. Cryptol. 4(1), 43–56 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. Stanley R.P.: Combinatorics and Commutative Algebra, 2nd Ed. Birkhäuser, Boston (1996)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremy L. Martin.

Additional information

The third author was supported in part by National Security Agency Young Investigators Grant number H98230-08-1-0073-P0001.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duval, A.M., Klivans, C.J. & Martin, J.L. Critical Groups of Simplicial Complexes. Ann. Comb. 17, 53–70 (2013). https://doi.org/10.1007/s00026-012-0168-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00026-012-0168-z

Mathematics Subject Classification

Keywords

Navigation