Skip to main content

Advertisement

Log in

Potential Therapeutic Options for Premature Ovarian Insufficiency: Experimental and Clinical Evidence

  • Infertility: Review
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Premature ovarian insufficiency (POI) is a condition in which a woman experiences premature decline in ovarian function before the age of 40 years, manifested by menstrual disorders, decreased fertility, and possibly postmenopausal symptoms such as insomnia, hot flashes, and osteoporosis, and is one of the predominant clinical syndromes leading to female infertility. Genetic, immunologic, iatrogenic and other factors, alone or in combination, have been reported to trigger POI, yet the etiology remains unknown in most cases. The main methods currently used clinically to ameliorate menopausal symptoms due to hypoestrogenemia in POI patients are hormone replacement therapy, while the primary methods available to address infertility in POI patients are oocyte donation and cryopreservation techniques, both of which have limitations to some degree. In recent years, researchers have continued to explore more efficient and safe therapies, and have achieved impressive results in preclinical trials. In this article, we will mainly review the three most popular therapies and their related signaling pathways published in the past ten years, with the aim of providing ideas for clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  1. Rebar RW, Keator CS. Expanding our knowledge of premature ovarian insufficiency. Fertil Steril. 2021;115(2):328–9. https://doi.org/10.1016/j.fertnstert.2020.09.145.

    Article  PubMed  Google Scholar 

  2. Anderson RA, et al. Anti-Müllerian hormone as a marker of ovarian reserve and premature ovarian insufficiency in children and women with cancer: a systematic review. Hum Reprod Update. 2022;28(3):417–34. https://doi.org/10.1093/humupd/dmac004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. European Society for Human Reproduction and Embryology (ESHRE) Guideline Group on POI et al. ESHRE Guideline: management of women with premature ovarian insufficiency. Hum Reprod. 2016;31(5):926–937. https://doi.org/10.1093/humrep/dew027.

  4. Golezar S, Ramezani Tehrani F, Khazaei S, Ebadi A, Keshavarz Z. The global prevalence of primary ovarian insufficiency and early menopause: a meta-analysis. Climacteric. 2019;22(4):403–11. https://doi.org/10.1080/13697137.2019.1574738.

    Article  CAS  PubMed  Google Scholar 

  5. De Vos M, Devroey P, Fauser BCJM. Primary ovarian insufficiency. Lancet. 2010;376(9744):911–21. https://doi.org/10.1016/S0140-6736(10)60355-8.

    Article  PubMed  Google Scholar 

  6. Silvén H, et al. Incidence and familial risk of premature ovarian insufficiency in the Finnish female population. Hum Reprod. 2022;37(5):1030–6. https://doi.org/10.1093/humrep/deac014.

    Article  PubMed  PubMed Central  Google Scholar 

  7. de Carvalho BR, de Rosa e Silva ACJS, Rosa e Silva JC, dos Reis RM, Ferriani RA, de Silva Sá MF. “Ovarian reserve evaluation: state of the art. J Assist Reprod Genet. 2008;25(7):311–22. https://doi.org/10.1007/s10815-008-9241-2.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Bates GW. Is hope on the horizon for premature ovarian insufficiency? Fertil Steril. 2018;109(5):800–1. https://doi.org/10.1016/j.fertnstert.2018.02.129.

    Article  PubMed  Google Scholar 

  9. Vujovic S. Aetiology of premature ovarian failure. Menopause Int. 2009;15(2):72–5. https://doi.org/10.1258/mi.2009.009020.

    Article  PubMed  Google Scholar 

  10. Takahashi A, Yousif A, Hong L, Chefetz II. Premature ovarian insufficiency: pathogenesis and therapeutic potential of mesenchymal stem cell. J Mol Med. 2021;99(5):637–50. https://doi.org/10.1007/s00109-021-02055-5.

    Article  CAS  PubMed  Google Scholar 

  11. Silvén H, et al. Association of genetic disorders and congenital malformations with premature ovarian insufficiency: a nationwide register-based study. Hum Reprod. 2023;38(6):1224–30. https://doi.org/10.1093/humrep/dead066.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Heddar A, et al. Genetic landscape of a large cohort of Primary Ovarian Insufficiency: New genes and pathways and implications for personalized medicine. EBioMedicine. 2022;84:104246. https://doi.org/10.1016/j.ebiom.2022.104246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Laml T, Preyer O, Umek W, Hengstschlager M, Hanzal H. Genetic disorders in premature ovarian failure. Hum Reprod Update. 2002;8(5):483–91. https://doi.org/10.1093/humupd/8.5.483.

    Article  CAS  PubMed  Google Scholar 

  14. Abir R, Fisch B, Nahum R, Orvieto R, Nitke S, Ben Rafael Z. Turner’s syndrome and fertility: current status and possible putative prospects. Hum Reprod Update. 2001;7(6):603–10. https://doi.org/10.1093/humupd/7.6.603.

    Article  CAS  PubMed  Google Scholar 

  15. Bondy CA, Bondy and Turner Syndrome Study Group. Care of girls and women with Turner syndrome: a guideline of the Turner Syndrome Study Group. J Clin Endocrinol Metab. 2007;92(1):10–25. https://doi.org/10.1210/jc.2006-1374.

    Article  CAS  PubMed  Google Scholar 

  16. Biswas L, Tyc K, El Yakoubi W, Morgan K, Xing J, Schindler K. Meiosis interrupted: the genetics of female infertility via meiotic failure. Reproduction. 2021;161(2):R13–35. https://doi.org/10.1530/REP-20-0422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yang Q, Mumusoglu S, Qin Y, Sun Y, Hsueh AJ. A kaleidoscopic view of ovarian genes associated with premature ovarian insufficiency and senescence. FASEB J. 2021;35(8):e21753. https://doi.org/10.1096/fj.202100756R.

    Article  CAS  PubMed  Google Scholar 

  18. Hu M, et al. PRC1-mediated epigenetic programming is required to generate the ovarian reserve. Nat Commun. 2022;13(1):4510. https://doi.org/10.1038/s41467-022-31759-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Roy S, et al. Jumonji domain-containing protein-3 (JMJD3/Kdm6b) is critical for normal ovarian function and female fertility. Endocrinology. 2022;163(5):bqac047. https://doi.org/10.1210/endocr/bqac047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jackson-Cook C. A hypothesis: Could telomere length and/or epigenetic alterations contribute to infertility in females with Turner syndrome? Am J Med Genet. 2019;181(1):116–24. https://doi.org/10.1002/ajmg.c.31684.

    Article  Google Scholar 

  21. Vichinsartvichai P. Primary ovarian insufficiency associated with autosomal abnormalities: from chromosome to genome-wide and beyond. Menopause. 2016;23(7):806–15. https://doi.org/10.1097/GME.0000000000000603.

    Article  PubMed  Google Scholar 

  22. Hanna CW, et al. MLL2 conveys transcription-independent H3K4 trimethylation in oocytes. Nat Struct Mol Biol. 2018;25(1):73–82. https://doi.org/10.1038/s41594-017-0013-5.

    Article  CAS  PubMed  Google Scholar 

  23. Szeliga A, et al. Autoimmune diseases in patients with premature ovarian insufficiency—our current state of knowledge. Int J Mol Sci. 2021;22(5):5. https://doi.org/10.3390/ijms22052594.

    Article  CAS  Google Scholar 

  24. Chen C-W, Huang Y-L, Tzeng C-R, Huang R-L, Chen C-H. Idiopathic low ovarian reserve is associated with more frequent positive thyroid peroxidase antibodies. Thyroid. 2017;27(9):1194–200. https://doi.org/10.1089/thy.2017.0139.

    Article  CAS  PubMed  Google Scholar 

  25. Luo W, Mao P, Zhang L, Chen X, Yang Z. “Assessment of ovarian reserve by serum anti-Müllerian hormone in patients with systemic lupus erythematosus: a meta-analysis. Ann Palliat Med. 2020;9(2):207–15. https://doi.org/10.21037/apm.2020.02.11.

    Article  PubMed  Google Scholar 

  26. Nguyen Q-N, Zerafa N, Findlay JK, Hickey M, Hutt KJ. DNA repair in primordial follicle oocytes following cisplatin treatment. J Assist Reprod Genet. 2021;38(6):1405–17. https://doi.org/10.1007/s10815-021-02184-3.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Nguyen Q-N, et al. Loss of PUMA protects the ovarian reserve during DNA-damaging chemotherapy and preserves fertility. Cell Death Dis. 2018;9(6):618. https://doi.org/10.1038/s41419-018-0633-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang Q, Stringer JM, Liu J, Hutt KJ. Evaluation of mitochondria in oocytes following γ-irradiation. Sci Rep. 2019;9(1):19941. https://doi.org/10.1038/s41598-019-56423-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Leung CT, et al. Low-dose radiation can cause epigenetic alterations associated with impairments in both male and female reproductive cells. Front Genet. 2021;12:710143. https://doi.org/10.3389/fgene.2021.710143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kaufman FR, Donnell GN, Roe TF, Kogut MD. Gonadal function in patients with galactosaemia. J Inherit Metab Dis. 1986;9(2):140–6. https://doi.org/10.1007/BF01799450.

    Article  CAS  PubMed  Google Scholar 

  31. Forges T, Monnier-Barbarino P, Leheup B, Jouvet P. Pathophysiology of impaired ovarian function in galactosaemia. Hum Reprod Update. 2006;12(5):573–84. https://doi.org/10.1093/humupd/dml031.

    Article  CAS  PubMed  Google Scholar 

  32. Menezo Y, Dale B, Elder K. The negative impact of the environment on methylation/epigenetic marking in gametes and embryos: A plea for action to protect the fertility of future generations. Mol Reprod Dev. 2019;86(10):1273–82. https://doi.org/10.1002/mrd.23116.

    Article  CAS  PubMed  Google Scholar 

  33. Turkyilmaz A, et al. Whole-exome sequencing reveals new potential genes and variants in patients with premature ovarian insufficiency. J Assist Reprod Genet. 2022;39(3):695–710. https://doi.org/10.1007/s10815-022-02408-0.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Lindh-Åstrand L, Hoffmann M, Järvstråt L, Fredriksson M, Hammar M, Spetz Holm A-C. Hormone therapy might be underutilized in women with early menopause. Hum Reprod. 2015;30(4):848–52. https://doi.org/10.1093/humrep/dev017.

    Article  CAS  PubMed  Google Scholar 

  35. Sare GM, Gray LJ, Bath PMW. Association between hormone replacement therapy and subsequent arterial and venous vascular events: a meta-analysis. Eur Heart J. 2008;29(16):2031–41. https://doi.org/10.1093/eurheartj/ehn299.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Pinelli S, Basile S. Fertility preservation: current and future perspectives for oncologic patients at risk for Iatrogenic premature ovarian insufficiency. Biomed Res Int. 2018;2018:6465903. https://doi.org/10.1155/2018/6465903.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Ruan X, et al. Ovarian tissue cryopreservation and transplantation prevents iatrogenic premature ovarian insufficiency: first 10 cases in China. Climacteric. 2020;23(6):574–80. https://doi.org/10.1080/13697137.2020.1767569.

    Article  CAS  PubMed  Google Scholar 

  38. Soares M, et al. Eliminating malignant cells from cryopreserved ovarian tissue is possible in leukaemia patients. Br J Haematol. 2017;178(2):231–9. https://doi.org/10.1111/bjh.14657.

    Article  CAS  PubMed  Google Scholar 

  39. Dolmans M-M, Hossay C, Nguyen TYT, Poirot C. Fertility preservation: how to preserve ovarian function in children, adolescents and adults. J Clin Med. 2021;10(22):5247. https://doi.org/10.3390/jcm10225247.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Kim SS, Battaglia DE, Soules MR. The future of human ovarian cryopreservation and transplantation: fertility and beyond. Fertil Steril. 2001;75(6):1049–56. https://doi.org/10.1016/s0015-0282(01)01790-3.

    Article  CAS  PubMed  Google Scholar 

  41. Baker V. Life plans and family-building options for women with primary ovarian insufficiency. Semin Reprod Med. 2011;29(4):362–72. https://doi.org/10.1055/s-0031-1280921.

    Article  PubMed  Google Scholar 

  42. Tong Y, et al. The trends and hotspots in premature ovarian insufficiency therapy from 2000 to 2022. Int J Environ Res Public Health. 2022;19(18):11728. https://doi.org/10.3390/ijerph191811728.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Maidarti M, Anderson RA, Telfer EE. Crosstalk between PTEN/PI3K/Akt signalling and DNA damage in the oocyte: implications for primordial follicle activation, oocyte quality and ageing. Cells. 2020;9(1):200. https://doi.org/10.3390/cells9010200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhou J, Peng X, Mei S. Autophagy in ovarian follicular development and atresia. Int J Biol Sci. 2019;15(4):726–37. https://doi.org/10.7150/ijbs.30369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mi X, Jiao W, Yang Y, Qin Y, Chen Z-J, Zhao S. HGF secreted by mesenchymal stromal cells promotes primordial follicle activation by increasing the activity of the PI3K-AKT signaling pathway. Stem Cell Rev Rep. 2022;18(5):1834–50. https://doi.org/10.1007/s12015-022-10335-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Castrillon DH, Miao L, Kollipara R, Horner JW, DePinho RA. Suppression of ovarian follicle activation in mice by the transcription factor Foxo3a. Science. 2003;301(5630):215–8. https://doi.org/10.1126/science.1086336.

    Article  CAS  PubMed  Google Scholar 

  47. Liu L, et al. Infertility caused by retardation of follicular development in mice with oocyte-specific expression of Foxo3a. Development. 2007;134(1):199–209. https://doi.org/10.1242/dev.02667.

    Article  CAS  PubMed  Google Scholar 

  48. Wang B, et al. Analysis of FOXO3 mutation in 114 Chinese women with premature ovarian failure. Reprod Biomed Online. 2010;20(4):499–503. https://doi.org/10.1016/j.rbmo.2010.01.008.

    Article  CAS  PubMed  Google Scholar 

  49. Zhang B-F, et al. The role of AKT and FOXO3 in preventing ovarian toxicity induced by cyclophosphamide”. PLoS One. 2018;13(8):e0201136. https://doi.org/10.1371/journal.pone.0201136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Thanatsis N, Kaponis A, Koika V, Georgopoulos NA, Decavalas GO. Reduced Foxo3a, FoxL2, and p27 mRNA expression in human ovarian tissue in premature ovarian insufficiency. Hormones (Athens). 2019;18(4):409–15. https://doi.org/10.1007/s42000-019-00134-4.

    Article  PubMed  Google Scholar 

  51. Cheng Y, Kim J, Li XX, Hsueh AJ. Promotion of ovarian follicle growth following mTOR activation: synergistic effects of AKT stimulators”. PLoS One. 2015;10(2):e0117769. https://doi.org/10.1371/journal.pone.0117769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Adhikari D, et al. Disruption of Tsc2 in oocytes leads to overactivation of the entire pool of primordial follicles. Mol Hum Reprod. 2009;15(12):765–70. https://doi.org/10.1093/molehr/gap092.

    Article  CAS  PubMed  Google Scholar 

  53. Adhikari D, et al. Tsc/mTORC1 signaling in oocytes governs the quiescence and activation of primordial follicles. Hum Mol Genet. 2010;19(3):397–410. https://doi.org/10.1093/hmg/ddp483.

    Article  CAS  PubMed  Google Scholar 

  54. Zhang J, et al. The protective effects of human umbilical cord mesenchymal stem cells on damaged ovarian function: A comparative study. Biosci Trends. 2016;10(4):265–76. https://doi.org/10.5582/bst.2016.01125.

    Article  CAS  PubMed  Google Scholar 

  55. Reddy P, et al. PDK1 signaling in oocytes controls reproductive aging and lifespan by manipulating the survival of primordial follicles. Hum Mol Genet. 2009;18(15):2813–24. https://doi.org/10.1093/hmg/ddp217.

    Article  CAS  PubMed  Google Scholar 

  56. John GB, Gallardo TD, Shirley LJ, Castrillon DH. Foxo3 is a PI3K-dependent molecular switch controlling the initiation of oocyte growth. Dev Biol. 2008;321(1):197–204. https://doi.org/10.1016/j.ydbio.2008.06.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Pan D. Hippo signaling in organ size control. Genes Dev. 2007;21(8):886–97. https://doi.org/10.1101/gad.1536007.

    Article  CAS  PubMed  Google Scholar 

  58. Zhai J, et al. In vitro activation of follicles and fresh tissue auto-transplantation in primary ovarian insufficiency patients. J Clin Endocrinol Metab. 2016;101(11):4405–12. https://doi.org/10.1210/jc.2016-1589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hsueh AJW, Kawamura K. Hippo signaling disruption and ovarian follicle activation in infertile patients. Fertil Steril. 2020;114(3):458–64. https://doi.org/10.1016/j.fertnstert.2020.07.031.

    Article  CAS  PubMed  Google Scholar 

  60. Lee HN, Chang EM. Primordial follicle activation as new treatment for primary ovarian insufficiency. Clin Exp Reprod Med. 2019;46(2):43–9. https://doi.org/10.5653/cerm.2019.46.2.43.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Grosbois J, Demeestere I. Dynamics of PI3K and Hippo signaling pathways during in vitro human follicle activation. Hum Reprod. 2018;33(9):1705–14. https://doi.org/10.1093/humrep/dey250.

    Article  CAS  PubMed  Google Scholar 

  62. Reddy P, Deguchi M, Cheng Y, Hsueh AJW. Actin cytoskeleton regulates Hippo signaling. PLoS One. 2013;8(9):e73763. https://doi.org/10.1371/journal.pone.0073763.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Liu J, et al. Wnt/β-catenin signalling: function, biological mechanisms, and therapeutic opportunities. Signal Transduct Target Ther. 2022;7(1):3. https://doi.org/10.1038/s41392-021-00762-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Chen C, et al. Protective effects of puerarin on premature ovarian failure via regulation of Wnt/β-catenin signaling pathway and oxidative stress. Reprod Sci. 2021;28(4):982–90. https://doi.org/10.1007/s43032-020-00325-0.

    Article  CAS  PubMed  Google Scholar 

  65. Fan H-Y, O’Connor A, Shitanaka M, Shimada M, Liu Z, Richards JS. Beta-catenin (CTNNB1) promotes preovulatory follicular development but represses LH-mediated ovulation and luteinization. Mol Endocrinol. 2010;24(8):1529–42. https://doi.org/10.1210/me.2010-0141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Chen B, et al. Mutation analysis of the WNT4 gene in Han Chinese women with premature ovarian failure. Reprod Biol Endocrinol. 2011;9:75. https://doi.org/10.1186/1477-7827-9-75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Boyer A, et al. WNT4 is required for normal ovarian follicle development and female fertility. FASEB J. 2010;24(8):3010–25. https://doi.org/10.1096/fj.09-145789.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Vainio S, Heikkilä M, Kispert A, Chin N, McMahon AP. Female development in mammals is regulated by Wnt-4 signalling. Nature. 1999;397(6718):405–9. https://doi.org/10.1038/17068.

    Article  CAS  PubMed  Google Scholar 

  69. Abedini A, et al. WNT5a is required for normal ovarian follicle development and antagonizes gonadotropin responsiveness in granulosa cells by suppressing canonical WNT signaling. FASEB J. 2016;30(4):1534–47. https://doi.org/10.1096/fj.15-280313.

    Article  CAS  PubMed  Google Scholar 

  70. Santibañez JF, Quintanilla M, Bernabeu C. TGF-β/TGF-β receptor system and its role in physiological and pathological conditions. Clin Sci (Lond). 2011;121(6):233–51. https://doi.org/10.1042/CS20110086.

    Article  CAS  PubMed  Google Scholar 

  71. Tiotiu D, et al. Variants of the BMP15 gene in a cohort of patients with premature ovarian failure. Hum Reprod. 2010;25(6):1581–7. https://doi.org/10.1093/humrep/deq073.

    Article  CAS  PubMed  Google Scholar 

  72. Rossetti R, et al. Fundamental role of BMP15 in human ovarian folliculogenesis revealed by null and missense mutations associated with primary ovarian insufficiency. Hum Mutat. 2020;41(5):983–97. https://doi.org/10.1002/humu.23988.

    Article  CAS  PubMed  Google Scholar 

  73. Park MJ, et al. Prediction of ovarian aging using ovarian expression of BMP15, GDF9, and C-KIT. Exp Biol Med (Maywood). 2020;245(8):711–9. https://doi.org/10.1177/1535370220915826.

    Article  CAS  PubMed  Google Scholar 

  74. Durlinger AL, et al. Control of primordial follicle recruitment by anti-Müllerian hormone in the mouse ovary. Endocrinology. 1999;140(12):5789–96. https://doi.org/10.1210/endo.140.12.7204.

    Article  CAS  PubMed  Google Scholar 

  75. Gruijters MJG, Visser JA, Durlinger ALL, Themmen APN. Anti-Müllerian hormone and its role in ovarian function. Mol Cell Endocrinol. 2003;211(1–2):85–90. https://doi.org/10.1016/j.mce.2003.09.024.

    Article  CAS  PubMed  Google Scholar 

  76. Gleicher N, et al. Clinical relevance of combined FSH and AMH observations in infertile women. J Clin Endocrinol Metab. 2013;98(5):2136–45. https://doi.org/10.1210/jc.2013-1051.

    Article  CAS  PubMed  Google Scholar 

  77. Li Q, Pangas SA, Jorgez CJ, Graff JM, Weinstein M, Matzuk MM. Redundant roles of SMAD2 and SMAD3 in ovarian granulosa cells in vivo. Mol Cell Biol. 2008;28(23):7001–11. https://doi.org/10.1128/MCB.00732-08.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Panay N, et al. Premature ovarian insufficiency: an International Menopause Society White Paper. Climacteric. 2020;23(5):426–46. https://doi.org/10.1080/13697137.2020.1804547.

    Article  CAS  PubMed  Google Scholar 

  79. Machura P, et al. Premature ovarian insufficiency - hormone replacement therapy and management of long-term consequences. Prz Menopauzalny. 2018;17(3):135–8. https://doi.org/10.5114/pm.2018.78559.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Piccioni P, et al. Hormonal replacement therapy after stem cell transplantation. Maturitas. 2004;49(4):327–33. https://doi.org/10.1016/j.maturitas.2004.02.015.

    Article  CAS  PubMed  Google Scholar 

  81. Madalinska JB, et al. The impact of hormone replacement therapy on menopausal symptoms in younger high-risk women after prophylactic salpingo-oophorectomy. J Clin Oncol. 2006;24(22):3576–82. https://doi.org/10.1200/JCO.2005.05.1896.

    Article  PubMed  Google Scholar 

  82. Baber RJ, Panay N, Fenton A. 2016 IMS Recommendations on women’s midlife health and menopause hormone therapy. Climacteric. 2016;19(2):109–50. https://doi.org/10.3109/13697137.2015.1129166.

    Article  CAS  PubMed  Google Scholar 

  83. Furness S, Roberts H, Marjoribanks J, Lethaby A, Hickey M, Farquhar C. Hormone therapy in postmenopausal women and risk of endometrial hyperplasia. Cochrane Database Syst Rev. 2004;3 https://doi.org/10.1002/14651858.CD000402.pub2

  84. Nelson HD, Humphrey LL, Nygren P, Teutsch SM, Allan JD. Postmenopausal hormone replacement therapy: scientific review. JAMA. 2002;288(7):872–81. https://doi.org/10.1001/jama.288.7.872.

    Article  CAS  PubMed  Google Scholar 

  85. Barrett-Connor E, Stuenkel CA. Hormone replacement therapy (HRT)–risks and benefits. Int J Epidemiol. 2001;30(3):423–6. https://doi.org/10.1093/ije/30.3.423.

    Article  CAS  PubMed  Google Scholar 

  86. Lutjen P, Trounson A, Leeton J, Findlay J, Wood C, Renou P. The establishment and maintenance of pregnancy using in vitro fertilization and embryo donation in a patient with primary ovarian failure. Nature. 1984;307(5947):5947. https://doi.org/10.1038/307174a0.

    Article  Google Scholar 

  87. Klein JU, Sauer MV. Ethics in egg donation: past, present, and future. Semin Reprod Med. 2010;28(4):322–8. https://doi.org/10.1055/s-0030-1255180.

    Article  PubMed  Google Scholar 

  88. Klitzman RL, Sauer MV. Kamakahi vs ASRM and the future of compensation for human eggs. Am J Obstet Gynecol. 2015;213(2):186-187.e1. https://doi.org/10.1016/j.ajog.2015.03.046.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Frith L, Blyth E, Farrand A. UK gamete donors’ reflections on the removal of anonymity: implications for recruitment. Hum Reprod. 2007;22(6):1675–80. https://doi.org/10.1093/humrep/dem061.

    Article  PubMed  Google Scholar 

  90. ÖzgülÖzdemir RB, et al. Mesenchymal stem cells: a potential treatment approach for refractory chronic spontaneous urticaria. Stem Cell Rev Rep. 2021;17(3):911–22. https://doi.org/10.1007/s12015-020-10059-w.

    Article  CAS  Google Scholar 

  91. Naji A, Eitoku M, Favier B, Deschaseaux F, Rouas-Freiss N, Suganuma N. Biological functions of mesenchymal stem cells and clinical implications. Cell Mol Life Sci. 2019;76(17):3323–48. https://doi.org/10.1007/s00018-019-03125-1.

    Article  CAS  PubMed  Google Scholar 

  92. Lai D, Wang F, Yao X, Zhang Q, Wu X, Xiang C. Human endometrial mesenchymal stem cells restore ovarian function through improving the renewal of germline stem cells in a mouse model of premature ovarian failure. J Transl Med. 2015;13:155. https://doi.org/10.1186/s12967-015-0516-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Park H-S, et al. Human BM-MSC secretome enhances human granulosa cell proliferation and steroidogenesis and restores ovarian function in primary ovarian insufficiency mouse model. Sci Rep. 2021;11(1):4525. https://doi.org/10.1038/s41598-021-84216-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Lee H-J, et al. Bone marrow transplantation generates immature oocytes and rescues long-term fertility in a preclinical mouse model of chemotherapy-induced premature ovarian failure. J Clin Oncol. 2007;25(22):3198–204. https://doi.org/10.1200/JCO.2006.10.3028.

    Article  CAS  PubMed  Google Scholar 

  95. Fu X, He Y, Xie C, Liu W. Bone marrow mesenchymal stem cell transplantation improves ovarian function and structure in rats with chemotherapy-induced ovarian damage. Cytotherapy. 2008;10(4):353–63. https://doi.org/10.1080/14653240802035926.

    Article  CAS  PubMed  Google Scholar 

  96. Kilic S, Pinarli F, Ozogul C, Tasdemir N, NazSarac G, Delibasi T. Protection from cyclophosphamide-induced ovarian damage with bone marrow-derived mesenchymal stem cells during puberty. Gynecol Endocrinol. 2014;30(2):135–40. https://doi.org/10.3109/09513590.2013.860127.

    Article  CAS  PubMed  Google Scholar 

  97. Gabr H, Rateb MA, El Sissy MH, Ahmed Seddiek H, Ali Abdelhameed Gouda S. The effect of bone marrow-derived mesenchymal stem cells on chemotherapy induced ovarian failure in albino rats. Microsc Res Techniq. 2016;79(10):938–47. https://doi.org/10.1002/jemt.22725.

    Article  CAS  Google Scholar 

  98. Song K, Cai H, Zhang D, Huang R, Sun D, He Y. Effects of human adipose-derived mesenchymal stem cells combined with estrogen on regulatory T cells in patients with premature ovarian insufficiency. Int Immunopharmacol. 2018;55:257–62. https://doi.org/10.1016/j.intimp.2017.12.026.

    Article  CAS  PubMed  Google Scholar 

  99. Sen Halicioglu B, Saadat KASM, Tuglu MI. “Adipose-derived mesenchymal stem cell transplantation in chemotherapy-induced premature ovarian insufficiency: the role of connexin and pannexin. Reprod Sci. 2022;29(4):1316–31. https://doi.org/10.1007/s43032-021-00718-9.

    Article  CAS  PubMed  Google Scholar 

  100. Hong L, et al. Protective effects of human umbilical cord mesenchymal stem cell-derived conditioned medium on ovarian damage. J Mol Cell Biol. 2020;12(5):372–85. https://doi.org/10.1093/jmcb/mjz105.

    Article  CAS  PubMed  Google Scholar 

  101. Liu T, et al. Transplantation of human menstrual blood stem cells to treat premature ovarian failure in mouse model. Stem Cells Dev. 2014;23(13):1548–57. https://doi.org/10.1089/scd.2013.0371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Cho J, et al. Vascular remodeling by placenta-derived mesenchymal stem cells restores ovarian function in ovariectomized rat model via the VEGF pathway. Lab Invest. 2021;101(3):304–17. https://doi.org/10.1038/s41374-020-00513-1.

    Article  CAS  PubMed  Google Scholar 

  103. Ling L, et al. Human amnion-derived mesenchymal stem cell (hAD-MSC) transplantation improves ovarian function in rats with premature ovarian insufficiency (POI) at least partly through a paracrine mechanism. Stem Cell Res Ther. 2019;10(1):46. https://doi.org/10.1186/s13287-019-1136-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Li J, et al. Human chorionic plate-derived mesenchymal stem cells transplantation restores ovarian function in a chemotherapy-induced mouse model of premature ovarian failure. Stem Cell Res Ther. 2018;9(1):81. https://doi.org/10.1186/s13287-018-0819-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Bahrehbar K, RezazadehValojerdi M, Esfandiari F, Fathi R, Hassani S-N, Baharvand H. Human embryonic stem cell-derived mesenchymal stem cells improved premature ovarian failure. World J Stem Cells. 2020;12(8):857–78. https://doi.org/10.4252/wjsc.v12.i8.857.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Lai D, Wang F, Dong Z, Zhang Q. Skin-derived mesenchymal stem cells help restore function to ovaries in a premature ovarian failure mouse model. PLoS One. 2014;9(5):e98749. https://doi.org/10.1371/journal.pone.0098749.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Feng X, et al. Effects of human amnion-derived mesenchymal stem cell (hAD-MSC) transplantation in situ on primary ovarian insufficiency in SD rats. Reprod Sci. 2020;27(7):1502–12. https://doi.org/10.1007/s43032-020-00147-0.

    Article  CAS  PubMed  Google Scholar 

  108. Fazekasova H, Lechler R, Langford K, Lombardi G. Placenta-derived MSCs are partially immunogenic and less immunomodulatory than bone marrow-derived MSCs. J Tissue Eng Regen Med. 2011;5(9):684–94. https://doi.org/10.1002/term.362.

    Article  CAS  PubMed  Google Scholar 

  109. Kretlow JD, et al. Donor age and cell passage affects differentiation potential of murine bone marrow-derived stem cells. BMC Cell Biol. 2008;9:60. https://doi.org/10.1186/1471-2121-9-60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Ding C, et al. EGF released from human placental mesenchymal stem cells improves premature ovarian insufficiency via NRF2/HO-1 activation. Aging (Albany NY). 2020;12(3):2992–3009. https://doi.org/10.18632/aging.102794.

    Article  CAS  PubMed  Google Scholar 

  111. Liu J, et al. Homing and restorative effects of bone marrow-derived mesenchymal stem cells on cisplatin injured ovaries in rats. Mol Cells. 2014;37(12):865–72. https://doi.org/10.14348/molcells.2014.0145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Ding L, et al. Transplantation of UC-MSCs on collagen scaffold activates follicles in dormant ovaries of POF patients with long history of infertility. Sci China Life Sci. 2018;61(12):1554–65. https://doi.org/10.1007/s11427-017-9272-2.

    Article  CAS  PubMed  Google Scholar 

  113. Fu X, et al. Overexpression of miR-21 in stem cells improves ovarian structure and function in rats with chemotherapy-induced ovarian damage by targeting PDCD4 and PTEN to inhibit granulosa cell apoptosis. Stem Cell Res Ther. 2017;8(1):187. https://doi.org/10.1186/s13287-017-0641-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Park H-S, et al. Towards cell free therapy of premature ovarian insufficiency: human bone marrow mesenchymal stem cells secretome enhances angiogenesis in human ovarian microvascular endothelial cells. HSOA J Stem Cells Res Dev Ther. 2019;5(2):019. https://doi.org/10.24966/srdt-2060/100019.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Deng T, et al. Human umbilical cord mesenchymal stem cells improve ovarian function in chemotherapy-induced premature ovarian failure mice through inhibiting apoptosis and inflammation via a paracrine mechanism. Reprod Sci. 2021;28(6):1718–32. https://doi.org/10.1007/s43032-021-00499-1.

    Article  CAS  PubMed  Google Scholar 

  116. Jiao W, et al. Mesenchymal stem cells combined with autocrosslinked hyaluronic acid improve mouse ovarian function by activating the PI3K-AKT pathway in a paracrine manner. Stem Cell Res Ther. 2022;13(1):49. https://doi.org/10.1186/s13287-022-02724-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Zhao Y, et al. Human umbilical cord mesenchymal stem cells restore the ovarian metabolome and rescue premature ovarian insufficiency in mice. Stem Cell Res Ther. 2020;11(1):466. https://doi.org/10.1186/s13287-020-01972-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Awwad J, Farra C, Hannoun A, Abou-Abdallah M, Isaacson K, Ghazeeri G. Idiopathic premature ovarian failure: what is the most suitable ovarian stimulation protocol? Clin Exp Obstet Gynecol. 2013;40(3):327–30.

    CAS  PubMed  Google Scholar 

  119. Cui L, et al. hUMSCs regulate the differentiation of ovarian stromal cells via TGF-β1/Smad3 signaling pathway to inhibit ovarian fibrosis to repair ovarian function in POI rats. Stem Cell Res Ther. 2020;11(1):386. https://doi.org/10.1186/s13287-020-01904-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. El-Derany MO, Said RS, El-Demerdash E. Bone marrow-derived mesenchymal stem cells reverse radiotherapy-induced premature ovarian failure: emphasis on signal integration of TGF-β, Wnt/β-catenin and hippo pathways. Stem Cell Rev Rep. 2021;17(4):1429–45. https://doi.org/10.1007/s12015-021-10135-9.

    Article  CAS  PubMed  Google Scholar 

  121. Edessy M, Hosni H, Shady Y, Waf Y, Bakr S, Kamel M. Autologous stem cells therapy, The first baby of idiopathic premature ovarian failure. Acta Med Int. 2016;3(1):19. https://doi.org/10.5530/ami.2016.1.7.

    Article  Google Scholar 

  122. Igboeli P, et al. Intraovarian injection of autologous human mesenchymal stem cells increases estrogen production and reduces menopausal symptoms in women with premature ovarian failure: two case reports and a review of the literature. J Med Case Rep. 2020;14(1):108. https://doi.org/10.1186/s13256-020-02426-5.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Yan L, et al. Clinical analysis of human umbilical cord mesenchymal stem cell allotransplantation in patients with premature ovarian insufficiency. Cell Proliferat. 2020;53(12):e12938. https://doi.org/10.1111/cpr.12938.

    Article  CAS  Google Scholar 

  124. Mashayekhi M, et al. Evaluation of safety, feasibility and efficacy of intra-ovarian transplantation of autologous adipose derived mesenchymal stromal cells in idiopathic premature ovarian failure patients: non-randomized clinical trial, phase I, first in human. J Ovarian Res. 2021;14(1):5. https://doi.org/10.1186/s13048-020-00743-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Marx RE. Platelet-rich plasma (PRP): what is PRP and what is not PRP? Implant Dent. 2001;10(4):225–8. https://doi.org/10.1097/00008505-200110000-00002.

    Article  CAS  PubMed  Google Scholar 

  126. Middleton KK, Barro V, Muller B, Terada S, Fu FH. Evaluation of the effects of platelet-rich plasma (PRP) therapy involved in the healing of sports-related soft tissue injuries. Iowa Orthop J. 2012;32:150–63.

    PubMed  PubMed Central  Google Scholar 

  127. Sharara FI, Lelea L-L, Rahman S, Klebanoff JS, Moawad GN. A narrative review of platelet-rich plasma (PRP) in reproductive medicine. J Assist Reprod Genet. 2021;38(5):1003–12. https://doi.org/10.1007/s10815-021-02146-9.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Sills ES, Rickers NS, Li X, Palermo GD. First data on in vitro fertilization and blastocyst formation after intraovarian injection of calcium gluconate-activated autologous platelet rich plasma. Gynecol Endocrinol. 2018;34(9):756–60. https://doi.org/10.1080/09513590.2018.1445219.

    Article  CAS  PubMed  Google Scholar 

  129. Tu S, Wu WJ, Wang J, Cerione RA. Epidermal growth factor-dependent regulation of Cdc42 is mediated by the Src tyrosine kinase. J Biol Chem. 2003;278(49):49293–300. https://doi.org/10.1074/jbc.M307021200.

    Article  CAS  PubMed  Google Scholar 

  130. Yan H, et al. CDC42 controls the activation of primordial follicles by regulating PI3K signaling in mouse oocytes. BMC Biol. 2018;16(1):73. https://doi.org/10.1186/s12915-018-0541-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Nilsson EE, Detzel C, Skinner MK. Platelet-derived growth factor modulates the primordial to primary follicle transition. Reproduction. 2006;131(6):1007–15. https://doi.org/10.1530/rep.1.00978.

    Article  CAS  PubMed  Google Scholar 

  132. El Bakly W, et al. Optimized platelet rich plasma releasate (O-rPRP) repairs galactosemia-induced ovarian follicular loss in rats by activating mTOR signaling and inhibiting apoptosis. Heliyon. 2020;6(9):e05006. https://doi.org/10.1016/j.heliyon.2020.e05006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Sfakianoudis K, et al. Autologous platelet-rich plasma treatment enables pregnancy for a woman in premature menopause. J Clin Med. 2018;8(1):1. https://doi.org/10.3390/jcm8010001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Pantos K, et al. A Case Series on Natural Conceptions Resulting in Ongoing Pregnancies in Menopausal and Prematurely Menopausal Women Following Platelet-Rich Plasma Treatment. Cell Transplant. 2019;28(9–10):1333–40. https://doi.org/10.1177/0963689719859539.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Sfakianoudis K, et al. Reactivating ovarian function through autologous platelet-rich plasma intraovarian infusion: pilot data on premature ovarian insufficiency, perimenopausal, menopausal, and poor responder women. J Clin Med. 2020;9(6):1809. https://doi.org/10.3390/jcm9061809.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Cakiroglu Y, et al. Effects of intraovarian injection of autologous platelet rich plasma on ovarian reserve and IVF outcome parameters in women with primary ovarian insufficiency. Aging (Albany NY). 2020;12(11):10211–22. https://doi.org/10.18632/aging.103403.

    Article  CAS  PubMed  Google Scholar 

  137. Sabouni R, Tarrab R, Kalaji D, Abbassi H. A new approach of using platelet-rich autologous plasma to increase the ovarian reservoir in a Syrian patient with ovarian insufficiency: A case report. Ann Med Surg (Lond). 2022;73:103149. https://doi.org/10.1016/j.amsu.2021.103149.

    Article  PubMed  Google Scholar 

  138. Navali N, et al. Intraovarian injection of autologous platelet-rich plasma improves therapeutic approaches in the patients with poor ovarian response: a before-after study. Int J Fertil Steril. 2022;16(2):90–4. https://doi.org/10.22074/IJFS.2021.533576.1154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Hsu C-C, Hsu L, Hsu I, Chiu Y-J, Dorjee S. Live birth in woman with premature ovarian insufficiency receiving ovarian administration of platelet-rich plasma (PRP) in combination with gonadotropin: a case report. Front Endocrinol. 2020;11:50. https://doi.org/10.3389/fendo.2020.00050.

    Article  Google Scholar 

  140. Li J, et al. Activation of dormant ovarian follicles to generate mature eggs. Proc Natl Acad Sci USA. 2010;107(22):10280–4. https://doi.org/10.1073/pnas.1001198107.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Suzuki N, et al. Successful fertility preservation following ovarian tissue vitrification in patients with primary ovarian insufficiency. Hum Reprod. 2015;30(3):608–15. https://doi.org/10.1093/humrep/deu353.

    Article  PubMed  Google Scholar 

  142. Kawamura K, et al. Hippo signaling disruption and Akt stimulation of ovarian follicles for infertility treatment. Proc Natl Acad Sci USA. 2013;110(43):17474–9. https://doi.org/10.1073/pnas.1312830110.

    Article  PubMed  PubMed Central  Google Scholar 

  143. Zhao B, Tumaneng K, Guan K-L. The Hippo pathway in organ size control, tissue regeneration and stem cell self-renewal. Nat Cell Biol. 2011;13(8):8. https://doi.org/10.1038/ncb2303.

    Article  CAS  Google Scholar 

  144. Zhang L, et al. Autotransplantation of the ovarian cortex after in-vitro activation for infertility treatment: a shortened procedure. Hum Reprod. 2021;36(8):2134–47. https://doi.org/10.1093/humrep/deab143.

    Article  CAS  PubMed  Google Scholar 

  145. McLaughlin M, Kinnell HL, Anderson RA, Telfer EE. Inhibition of phosphatase and tensin homologue (PTEN) in human ovary in vitro results in increased activation of primordial follicles but compromises development of growing follicles. Mol Hum Reprod. 2014;20(8):736–44. https://doi.org/10.1093/molehr/gau037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Kawamura K, Ishizuka B, Hsueh AJW. Drug-free in-vitro activation of follicles for infertility treatment in poor ovarian response patients with decreased ovarian reserve. Reprod Biomed Online. 2020;40(2):245–53. https://doi.org/10.1016/j.rbmo.2019.09.007.

    Article  CAS  PubMed  Google Scholar 

  147. Keikha F, et al. One side ovarian rejuvenation: a quasi-experimental study of the effect of the autologous platelet rich plasma in poor ovarian responders in IVF. Ethiop J Health Sci. 2022;32(6):1133–40. https://doi.org/10.4314/ejhs.v32i6.10.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Cakiroglu Y, et al. Ovarian reserve parameters and IVF outcomes in 510 women with poor ovarian response (POR) treated with intraovarian injection of autologous platelet rich plasma (PRP). Aging Albany NY. 2022;14(6):2513–23. https://doi.org/10.18632/aging.203972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Imesch P, et al. Developmental potential of human oocytes matured in vitro followed by vitrification and activation. J Ovarian Res. 2013;6:30. https://doi.org/10.1186/1757-2215-6-30.

    Article  PubMed  PubMed Central  Google Scholar 

  150. Fabregues F, et al. Pregnancy after drug-free in vitro activation of follicles and fresh tissue autotransplantation in primary ovarian insufficiency patient: a case report and literature review. J Ovarian Res. 2018;11(1):76. https://doi.org/10.1186/s13048-018-0447-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Lunding SA, et al. Biopsying, fragmentation and autotransplantation of fresh ovarian cortical tissue in infertile women with diminished ovarian reserve. Hum Reprod. 2019;34(10):1924–36. https://doi.org/10.1093/humrep/dez152.

    Article  CAS  PubMed  Google Scholar 

  152. Ferreri J, et al. Drug-free in-vitro activation of follicles and fresh tissue autotransplantation as a therapeutic option in patients with primary ovarian insufficiency. Reprod Biomed Online. 2020;40(2):254–60. https://doi.org/10.1016/j.rbmo.2019.11.009.

    Article  CAS  PubMed  Google Scholar 

  153. Zhai J, et al. Autotransplantation of the ovarian cortex after in-vitro activation for infertility treatment: a shortened procedure. Hum Reprod. 2021;36(8):2134–47. https://doi.org/10.1093/humrep/deab143.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by grants from Research Fund for Shandong Provincial Natural Science Foundation (ZR2020QH042) and Lin He’s Academician Workstation of New Medicine and Clinical Translation in Jining Medical University (JYHL2021MS13).

Author information

Authors and Affiliations

Authors

Contributions

Kai Meng and Xuechun Ding contributed to the study conception and design. Xuechun Ding, Shenmin Lv, Zhipeng Guo and Xiaowei Gong wrote the manuscript. Kai Meng, Caiqin Wang and Xiaoyan Zhang contributed to editorial changes in the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Kai Meng.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

All authors approved the final manuscript and the submission to this journal.

Conflicts of Interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, X., Lv, S., Guo, Z. et al. Potential Therapeutic Options for Premature Ovarian Insufficiency: Experimental and Clinical Evidence. Reprod. Sci. 30, 3428–3442 (2023). https://doi.org/10.1007/s43032-023-01300-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-023-01300-1

Keywords

Navigation