Skip to main content

Advertisement

Log in

Assessment of Epiregulin Effect and its Combination with Gonadotropins on Proliferation, Apoptosis, and Secretory Activity by Human Ovarian Cells

  • Reproductive Biology: Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

The release of epidermal growth factor ligand epiregulin (EREG) by human ovarian granulosa cells, its direct action on basic ovarian cell functions, and interrelationships with gonadotropins were investigated. We examined (1) the ovarian production of EREG (the time-dependent accumulation of EREG in the medium incubated with human ovarian granulosa cells, and (2) the effect of the addition of EREG (0, 1, 10, and 100 ng.ml−1) given alone or in combination with FSH or LH (100 ng.ml−1) on basic granulosa cells functions. Viability, proliferation (accumulation of PCNA and cyclin B1) and apoptosis (accumulation of bax and caspase 3), the release of steroid hormones (progesterone, testosterone, and estradiol), and prostaglandin E2 (PGE2) were analyzed by using the Trypan blue exclusion test, quantitative immunocytochemistry, and ELISA. A significant time-dependent accumulation of EREG in a medium cultured with human granulosa cells with a peak at 3 and 4 days was observed. The addition of EREG alone increased cell viability, proliferation, progesterone, testosterone, and estradiol release, decreased apoptosis, bud did not affect PGE2 release. The addition of either FSH or LH alone increased cell viability, proliferation, progesterone, testosterone, estradiol, and PGE2 release and decreased apoptosis. Furthermore, both FSH and LH mostly promoted the stimulatory action of EREG on granulosa cell functions. These results demonstrated, that EREG produced by ovarian cells can be an autocrine/paracrine stimulator of human ovarian cell functions. Furthermore, they demonstrate the functional interrelationship between EREG and gonadotropins in the control of ovarian functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  1. Anderson RC, Newton CL, Anderson RA, Millar RP. Gonadotropins and their analogs: current and potential clinical applications. Endocr Rev. 2018;39(6):911–37. https://doi.org/10.1210/er.2018-00052.

    Article  PubMed  Google Scholar 

  2. Sirotkin AV. Regulators of ovarian functions. Nova Publishers Inc: New York; 2014.

    Google Scholar 

  3. Singh B, Carpenter G, Coffey RJ. EGF receptor ligands: recent advances. F1000Research. 2016;5:F1000 Faculty Rev-2270. https://doi.org/10.12688/f1000research.9025.1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Riese DJ 2nd, Cullum RL. Epiregulin: roles in normal physiology and cancer. Semin Cell Dev Biol. 2014;28:49–56. https://doi.org/10.1016/j.semcdb.2014.03.005H.

    Article  CAS  PubMed  Google Scholar 

  5. Sekiguchi T, Mizutani T, Yamada K, Kajitani T, Yazawa T, Yoshino M, Miyamoto K. Expression of epiregulin and amphiregulin in the rat ovary. J Mol Endocrinol. 2004;33(1):281–91. https://doi.org/10.1677/jme.0.0330281.

    Article  CAS  PubMed  Google Scholar 

  6. Garnett K, Wang J, Roy SK. Spatiotemporal expression of epidermal growth factor receptor messenger RNA and protein in the hamster ovary: follicle stage-specific differential modulation by follicle-stimulating hormone, luteinizing hormone, estradiol, and progesterone. Biol Reprod. 2002;67(5):1593–604. https://doi.org/10.1095/biolreprod.102.005470.

    Article  CAS  PubMed  Google Scholar 

  7. Gall L, Chene N, Dahirel M, Ruffini S, Boulesteix C. Expression of epidermal growth factor receptor in the goat cumulus-oocyte complex. Mol Reprod Dev. 2004;67(4):439–45. https://doi.org/10.1002/mrd.20040.

    Article  CAS  PubMed  Google Scholar 

  8. Puttabyatappa M, Brogan RS, Vandevoort CA, Chaffin CL. EGF-like ligands mediate progesterone’s anti-apoptotic action on macaque granulosa cells. Biol Reprod. 2013;88(1):18. https://doi.org/10.1095/biolreprod.112.103002.

    Article  CAS  PubMed  Google Scholar 

  9. Freimann S, Ben-Ami I, Dantes A, Ron-El R, Amsterdam A. EGF-like factor epiregulin and amphiregulin expression is regulated by gonadotropins/cAMP in human ovarian follicular cells. Biochem Biophys Res Commun. 2004;324(2):829–34. https://doi.org/10.1016/j.bbrc.2004.09.129.

    Article  CAS  PubMed  Google Scholar 

  10. Qu J, Godin PA, Nisolle M, Donnez J. Distribution and epidermal growth factor receptor expression of primordial follicles in human ovarian tissue before and after cryopreservation. Hum Reprod (Oxford, England). 2000;15(2):302–10. https://doi.org/10.1093/humrep/15.2.302.

    Article  CAS  Google Scholar 

  11. Ashkenazi H, Cao X, Motola S, Popliker M, Conti M, Tsafriri A. Epidermal growth factor family members: endogenous mediators of the ovulatory response. Endocrinology. 2005;146(1):77–84. https://doi.org/10.1210/en.2004-0588.

    Article  CAS  PubMed  Google Scholar 

  12. Downs SM, Chen J. EGF-like peptides mediate FSH-induced maturation of cumulus cell-enclosed mouse oocytes. Mol Reprod Dev. 2008;75(1):105–14. https://doi.org/10.1002/mrd.20781.

    Article  CAS  PubMed  Google Scholar 

  13. Park JY, Su YQ, Ariga M, Law E, Jin SL, Conti M. EGF-like growth factors as mediators of LH action in the ovulatory follicle. Science (New York, NY). 2004;303(5658):682–4. https://doi.org/10.1126/science.1092463.

    Article  CAS  PubMed  Google Scholar 

  14. Procházka R, Petlach M, Nagyová E, Nemcová L. Effect of epidermal growth factor-like peptides on pig cumulus cell expansion, oocyte maturation, and acquisition of developmental competence in vitro: comparison with gonadotropins. Reproduction (Cambridge, England). 2011;141(4):425–35. https://doi.org/10.1530/REP-10-0418.

    Article  CAS  PubMed  Google Scholar 

  15. Kim K, Lee H, Threadgill DW, Lee D. Epiregulin-dependent amphiregulin expression and ERBB2 signaling are involved in luteinizing hormone-induced paracrine signaling pathways in mouse ovary. Biochem Biophys Res Commun. 2011;405(2):319–24. https://doi.org/10.1016/j.bbrc.2011.01.039.

    Article  CAS  PubMed  Google Scholar 

  16. Sayasith K, Lussier J, Doré M, Sirois J. Human chorionic gonadotropin-dependent up-regulation of epiregulin and amphiregulin in equine and bovine follicles during the ovulatory process. Gen Comp Endocrinol. 2013;180:39–47. https://doi.org/10.1016/j.ygcen.2012.10.012.

    Article  CAS  PubMed  Google Scholar 

  17. Fang L, Cheng JC, Chang HM, Sun YP, Leung PC. EGF-like growth factors induce COX-2-derived PGE2 production through ERK1/2 in human granulosa cells. J Clin Endocrinol Metab. 2013;98(12):4932–41. https://doi.org/10.1210/jc.2013-2662.

    Article  CAS  PubMed  Google Scholar 

  18. Shimada M, Umehara T, Hoshino Y. Roles of epidermal growth factor (EGF)-like factor in the ovulation process. Reprod Med Biol. 2016;15(4):201–16. https://doi.org/10.1007/s12522-016-0236-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fang L, Yu Y, Zhang R, He J, Sun YP. Amphiregulin mediates hCG-induced StAR expression and progesterone production in human granulosa cells. Sci Rep. 2016;6:24917. https://doi.org/10.1038/srep24917.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Espey LL, Richards JS. Temporal and spatial patterns of ovarian gene transcription following an ovulatory dose of gonadotropin in the rat. Biol Reprod. 2002;67(6):1662–70. https://doi.org/10.1095/biolreprod.102.005173.

    Article  CAS  PubMed  Google Scholar 

  21. Ben-Ami I, Freimann S, Armon L, Dantes A, Ron-El R, Amsterdam A. Novel function of ovarian growth factors: combined studies by DNA microarray, biochemical and physiological approaches. Mol Hum Reprod. 2006;12(7):413–9. https://doi.org/10.1093/molehr/gal045.

    Article  CAS  PubMed  Google Scholar 

  22. Conti M, Hsieh M, Park JY, Su YQ. Role of the epidermal growth factor network in ovarian follicles. Mol Endocrinol (Baltimore, Md). 2006;20(4):715–23. https://doi.org/10.1210/me.2005-0185.

    Article  CAS  Google Scholar 

  23. Hsieh M, Zamah AM, Conti M. Epidermal growth factor-like growth factors in the follicular fluid: role in oocyte development and maturation. Semin Reprod Med. 2009;27(1):52–61. https://doi.org/10.1055/s-0028-1108010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fabová Z, Loncová B, MlynEk M, Sirotkin AV. Interrelationships between amphiregulin, kisspeptin, FSH and FSH receptor in promotion of human ovarian cell functions. Reprod Fertil Dev. 2022;34(3):362–77. https://doi.org/10.1071/RD21230.

    Article  CAS  PubMed  Google Scholar 

  25. Sirotkin AV, Mlynček M, Kotwica J, Makarevich AV, Florkovičová I, Hetényi L. Leptin directly controls secretory activity of human ovarian granulosa cells: possible inter-relationship with the IGF/IGFBP system. Horm Res. 2005;2005(64):198–202. https://doi.org/10.1159/000089009.

    Article  CAS  Google Scholar 

  26. Fabová Z, Sirotkin AV. Interrelationships between kisspeptin and FSH in control of porcine ovarian cell functions. Domest Anim Endocrinol. 2021;74:106520. https://doi.org/10.1016/j.domaniend.2020.106520.

    Article  CAS  PubMed  Google Scholar 

  27. Sirotkin AV, Dekanová P, Harrath AH. FSH, oxytocin and IGF-I regulate the expression of sirtuin 1 in porcine ovarian granulosa cells. Physiol Res. 2020;69(3):461–6. https://doi.org/10.33549/physiolres.934424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sirotkin AV, Kadasi A, Stochmalova A, Balazi A, Földesiová M, Makovicky P, Chrenek P, Harrath AH. Effect of turmeric on the viability, ovarian folliculogenesis, fecundity, ovarian hormones and response to luteinizing hormone of rabbits. Anim Int J Anim Biosci. 2018;12(6):1242–9. https://doi.org/10.1017/S175173111700235X.

    Article  CAS  Google Scholar 

  29. Sirotkin AV, Rafay J, Kotwica J, Darlak K, Valenzuela F. Role of ghrelin in regulating rabbit ovarian function and the response to LH and IGF-I. Domest Anim Endocrinol. 2009;36(3):162–72. https://doi.org/10.1016/j.domaniend.2008.12.003.

    Article  CAS  PubMed  Google Scholar 

  30. Çelik Uzuner S. Development of a direct trypan blue exclusion method to detect cell viability of adherent cells into ELISA plates. Celal Bayar Univ J Sci. 2018;14(1):99–104. https://doi.org/10.18466/cbayarfbe.372192.

    Article  CAS  Google Scholar 

  31. Perry SW, Epstein LG, Gelbard HA. In situ trypan blue staining of monolayer cell cultures for permanent fixation and mounting. Biotechniques. 1997;22(6):1020–4. https://doi.org/10.2144/97226bm01.

    Article  CAS  PubMed  Google Scholar 

  32. Gaumer S, Guénal I, Brun S, Théodore L, Mignotte B. Bcl-2 and Bax mammalian regulators of apoptosis are functional in Drosophila. Cell Death Differ. 2000. https://doi.org/10.1038/sj.cdd.4400714.

    Article  PubMed  Google Scholar 

  33. Osborn M, Isenberg S. Immunocytochemistry of frozen and paraffin tissue sections. In: Celis JE, editor. Cell Biology. A Laboratory Handbook, vol. 2. New York: Academic Press; 1994. p. 361–7.

    Google Scholar 

  34. Nakayama Y, Yamaguchi N. Role of cyclin B1 levelsinDNA damage and DNA damage-induced senescence. Int Rev Cell Mol Biol. 2013;305:303–37. https://doi.org/10.1016/B978-0-12-407695-2.00007-X.

    Article  CAS  PubMed  Google Scholar 

  35. Shiomi Y, Nishitani H. Control of genome integrity by RFC complexes; conductors of PCNA loading onto and unloading from chromatin during DNA replication. Genes. 2017;8(2):52. https://doi.org/10.3390/genes8020052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. An L-S, Yuan X-H, Hu Y, et al. Progesterone production requires activation of caspase-3 in preovulatory granulosa cells in a serum starvation model. Steroids. 2012;77(13):1477–82. https://doi.org/10.1016/j.steroids.2012.07.011.

    Article  CAS  PubMed  Google Scholar 

  37. Peña-Blanco A, García-Sáez AJ. Bax, Bak and beyond - mitochondrial performance in apoptosis. FEBS J. 2018;285(3):416–31. https://doi.org/10.1111/febs.14186.

    Article  CAS  PubMed  Google Scholar 

  38. Das N, Kumar TR. Molecular regulation of follicle-stimulating hormone synthesis, secretion and action. J Mol Endocrinol. 2018;60(3):R131–55. https://doi.org/10.1530/JME-17-0308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Scaramuzzi RJ, Baird DT, Campbell BK, Driancourt MA, Dupont J, Fortune JE, Gilchrist RB, Martin GB, McNatty KP, McNeilly AS, Monget P, Monniaux D, Viñoles C, Webb R. Regulation of folliculogenesis and the determination of ovulation rate in ruminants. Reprod Fertil Dev. 2011;23(3):444–67. https://doi.org/10.1071/RD09161.

    Article  CAS  PubMed  Google Scholar 

  40. Fru KN, Cherian-Shaw M, Puttabyatappa M, VandeVoort CA, Chaffin CL. Regulation of granulosa cell proliferation and EGF-like ligands during the periovulatory interval in monkeys. Hum Reprod (Oxford, England). 2007;22(5):1247–52. https://doi.org/10.1093/humrep/del519.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the Slovak Research and Development Agency (APVV), project APVV-15-0296, and the Scientific Grant Agency of the Ministry of Education, Science, and Sport of Slovak Republic (VEGA), project VEGA 13-ENV1321-02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbora Loncová.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflicts of Interest

The authors confirm the lack of potential conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loncová, B., Fabová, Z., Mlynček, M. et al. Assessment of Epiregulin Effect and its Combination with Gonadotropins on Proliferation, Apoptosis, and Secretory Activity by Human Ovarian Cells. Reprod. Sci. 30, 2537–2546 (2023). https://doi.org/10.1007/s43032-023-01205-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-023-01205-z

Keywords

Navigation