Skip to main content

Advertisement

Log in

Synthesis, Regulatory Factors, and Signaling Pathways of Estrogen in the Ovary

  • Review
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

New insights have been thrown for understanding the significant role of estrogen on various systems of humans. Increasing evidences have determined the significant roles of estrogen in female reproductive system. So, the normal synthesis and secretion of estrogen play important roles in maintaining the function of tissues and organs. The ovaries are the main synthetic organs of estrogen. In this review, we summarized the current knowledge of the estrogen synthesis in the ovaries. A series of factors and signaling pathways that regulate the synthesis of estrogen are expounded in detail. Understanding the regulating factors and potential mechanism related to estrogen synthesis will be beneficial for understanding estrogen disorder related diseases and may provide novel therapeutic targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Mauvais-Jarvis F, Clegg DJ, Hevener AL. The role of estrogens in control of energy balance and glucose homeostasis. Endocr Rev. 2013;34(3):309–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. O’Donnell L, Robertson KM, Jones ME, Simpson ER. Estrogen and spermatogenesis. Endocr Rev. 2001;22(3):289–318.

    Article  CAS  PubMed  Google Scholar 

  3. Knowlton AA, Lee AR. Estrogen and the cardiovascular system. Pharmacol Ther. 2012;135(1):54–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Al-Shboul OA, Al-Rshoud HJ, Al-Dwairi AN, Alqudah MA, Alfaqih MA, Mustafa AG, et al. Changes in gastric smooth muscle cell contraction during pregnancy: effect of estrogen. J Pregnancy. 2019;2019:4302309.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Deng L, Guo Y. Estrogen effects on orthodontic tooth movement and orthodontically-induced root resorption. Arch Oral Biol. 2020;118:104840.

    Article  CAS  PubMed  Google Scholar 

  6. Pöllänen E, Sipilä S, Alen M, Ronkainen PH, Ankarberg-Lindgren C, Puolakka J, et al. Differential influence of peripheral and systemic sex steroids on skeletal muscle quality in pre- and postmenopausal women. Aging Cell. 2011;10(4):650–60.

    Article  PubMed  Google Scholar 

  7. Gillies GE, McArthur S. Estrogen actions in the brain and the basis for differential action in men and women: a case for sex-specific medicines. Pharmacol Rev. 2010;62(2):155–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dumont NA, Bentzinger CF, Sincennes MC, Rudnicki MA. Satellite cells and skeletal muscle regeneration. Compr Physiol. 2015;5(3):1027–59.

    Article  PubMed  Google Scholar 

  9. Wade GN, Schneider JE. Metabolic fuels and reproduction in female mammals. Neurosci Biobehav Rev. 1992;16(2):235–72.

    Article  CAS  PubMed  Google Scholar 

  10. Russell JK, Jones CK, Newhouse PA. The role of estrogen in brain and cognitive aging. Neurotherapeutics. 2019;16(3):649–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pan Q, Guo K, Li Y, Tu Q. Role of TXNIP-mediated oxidative stress in delaying Alzheimer’s disease by estrogen. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2019;44(12):1360–6.

    PubMed  Google Scholar 

  12. Torre D, Lolli F, Ciana P, Maggi A. Sexual dimorphism and estrogen action in mouse liver. Adv Exp Med Biol. 2017;1043:141–51.

    Article  PubMed  Google Scholar 

  13. Fu X, Xing L, Xu W, Shu J. Treatment with estrogen protects against ovariectomy-induced hepatic steatosis by increasing AQP7 expression. Mol Med Rep. 2016;14(1):425–31. https://doi.org/10.3892/mmr.2016.5236.

    Article  CAS  PubMed  Google Scholar 

  14. Wilkinson HN, Hardman MJ. The role of estrogen in cutaneous ageing and repair. Maturitas. 2017;103:60–4.

    Article  CAS  PubMed  Google Scholar 

  15. Britt KL, Findlay JK. Estrogen actions in the ovary revisited. J Endocrinol. 2002;175(2):269–76.

    Article  CAS  PubMed  Google Scholar 

  16. Eyster KM. The estrogen receptors: an overview from different perspectives. Methods Mol Biol. 2016;1366:1–10.

    Article  CAS  PubMed  Google Scholar 

  17. Chou CH, Chen MJ. The effect of steroid hormones on ovarian follicle development. Vitam Horm. 2018;107:155–75.

    Article  CAS  PubMed  Google Scholar 

  18. Kolibianakis EM, Papanikolaou EG, Fatemi HM, Devroey P. Estrogen and folliculogenesis: is one necessary for the other? Curr Opin Obstet Gynecol. 2005;17(3):249–53.

    Article  PubMed  Google Scholar 

  19. Zhao D, Lv C, Liu G, Mi Y, Zhang C. Effect of estrogen on chick primordial follicle development and activation. Cell Biol Int. 2017;41(6):630–8.

    Article  CAS  PubMed  Google Scholar 

  20. Kezele P, Skinner MK. Regulation of ovarian primordial follicle assembly and development by estrogen and progesterone: endocrine model of follicle assembly. Endocrinology. 2003;144(8):3329–37.

    Article  CAS  PubMed  Google Scholar 

  21. Yu YS, Sui HS, Han ZB, Li W, Luo MJ, Tan JH. Apoptosis in granulosa cells during follicular atresia: relationship with steroids and insulin-like growth factors. Cell Res. 2004;14(4):341–6.

    Article  CAS  PubMed  Google Scholar 

  22. Dougherty DC, Sanders MM. Estrogen action: revitalization of the chick oviduct model. Trends Endocrinol Metab. 2005;16(9):414–9.

    Article  CAS  PubMed  Google Scholar 

  23. Li S, O’Neill SR, Zhang Y, Holtzman MJ, Takemaru KI, Korach KS, et al. Estrogen receptor α is required for oviductal transport of embryos. Faseb J. 2017;31(4):1595–607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mallepell S, Krust A, Chambon P, Brisken C. Paracrine signaling through the epithelial estrogen receptor alpha is required for proliferation and morphogenesis in the mammary gland. Proc Natl Acad Sci USA. 2006;103(7):2196–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ciarloni L, Mallepell S, Brisken C. Amphiregulin is an essential mediator of estrogen receptor alpha function in mammary gland development. Proc Natl Acad Sci USA. 2007;104(13):5455–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Vasquez YM. Estrogen-regulated transcription: mammary gland and uterus. Steroids. 2018;133:82–6.

    Article  CAS  PubMed  Google Scholar 

  27. Ikeda K, Horie-Inoue K, Inoue S. Functions of estrogen and estrogen receptor signaling on skeletal muscle. J Steroid Biochem Mol Biol. 2019;191:105375.

    Article  CAS  PubMed  Google Scholar 

  28. Wang C, Hsueh AJ, Erickson GF. LH stimulation of estrogen secretion by cultured rat granulosa cells. Mol Cell Endocrinol. 1981;24(1):17–28.

    Article  CAS  PubMed  Google Scholar 

  29. Shoham Z, Schachter M. Estrogen biosynthesis–regulation, action, remote effects, and value of monitoring in ovarian stimulation cycles. Fertil Steril. 1996;65(4):687–701.

    Article  CAS  PubMed  Google Scholar 

  30. Nelson LR, Bulun SE. Estrogen production and action. J Am Acad Dermatol. 2001;45(3 Suppl):S116–24.

    Article  CAS  PubMed  Google Scholar 

  31. Stilley JAW, Segaloff DL. FSH actions and pregnancy: looking beyond ovarian FSH receptors. Endocrinology. 2018;159(12):4033–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Casarini L, Crépieux P. Molecular mechanisms of action of FSH. Front Endocrinol (Lausanne). 2019;10:305.

    Article  PubMed  Google Scholar 

  33. Amri H, Silberzahn P, al-Timimi I, Gaillard JL. Aromatase activity in the mare ovary during estrous cycle. Measurement of endogenous steroids and of their in vitro inhibitory effect. Acta Endocrinol (Copenh). 1993;129(6):536–42.

    CAS  PubMed  Google Scholar 

  34. Martínez P, Blasco MA. Telomeric and extra-telomeric roles for telomerase and the telomere-binding proteins. Nat Rev Cancer. 2011;11(3):161–76.

    Article  PubMed  Google Scholar 

  35. Mordechai A, Wasserman M, Abramov M, Ben-Menahem D, Har-Vardi I, Levitas E, et al. Increasing telomerase enhanced steroidogenic genes expression and steroid hormones production in rat and human granulosa cells and in mouse ovary. J Steroid Biochem Mol Biol. 2020;197:105551.

    Article  CAS  PubMed  Google Scholar 

  36. Riaz H, Yousuf MR, Liang A, Hua GH, Yang L. Effect of melatonin on regulation of apoptosis and steroidogenesis in cultured buffalo granulosa cells. Anim Sci J. 2019;90(4):473–80.

    Article  CAS  PubMed  Google Scholar 

  37. Zhang F, Chen Y, Heiman M, Dimarchi R. Leptin: structure, function and biology. Vitam Horm. 2005;71:345–72.

    Article  CAS  PubMed  Google Scholar 

  38. Kumar PA, Sivakumar AVN, Pathipati D, Chakravarthi VP, Brahmaiah KV, Rao VH. Leptin induced in vitro development of ovarian follicles in sheep is related to the expression of P450 aromatase and steroidogenesis. Theriogenology. 2019;136:1–6.

    Article  CAS  PubMed  Google Scholar 

  39. Harter CJL, Kavanagh GS, Smith JT. The role of kisspeptin neurons in reproduction and metabolism. J Endocrinol. 2018;238(3):R173–83.

    Article  CAS  PubMed  Google Scholar 

  40. Rizzo A, Ceci E, Guaricci AC, Sciorsci RL. Kisspeptin in the early post-partum of the dairy cow. Reprod Domest Anim. 2019;54(2):195–8.

    Article  CAS  PubMed  Google Scholar 

  41. Wang Q, Kim JY, Xue K, Liu JY, Leader A, Tsang BK. Chemerin, a novel regulator of follicular steroidogenesis and its potential involvement in polycystic ovarian syndrome. Endocrinology. 2012;153(11):5600–11.

    Article  CAS  PubMed  Google Scholar 

  42. Kim JY, Xue K, Cao M, Wang Q, Liu JY, Leader A, et al. Chemerin suppresses ovarian follicular development and its potential involvement in follicular arrest in rats treated chronically with dihydrotestosterone. Endocrinology. 2013;154(8):2912–23.

    Article  CAS  PubMed  Google Scholar 

  43. Facchinetti F, Unfer V, Dewailly D, Kamenov ZA, Diamanti-Kandarakis E, Laganà AS, et al. Inositols in polycystic ovary syndrome: an overview on the advances. Trends Endocrinol Metab. 2020;31(6):435–47.

    Article  CAS  PubMed  Google Scholar 

  44. Bhatia B, Price CA. Insulin alters the effects of follicle stimulating hormone on aromatase in bovine granulosa cells in vitro. Steroids. 2001;66(6):511–9.

    Article  CAS  PubMed  Google Scholar 

  45. Mu YM, Yanase T, Nishi Y, Waseda N, Oda T, Tanaka A, et al. Insulin sensitizer, troglitazone, directly inhibits aromatase activity in human ovarian granulosa cells. Biochem Biophys Res Commun. 2000;271(3):710–3.

    Article  CAS  PubMed  Google Scholar 

  46. Carbone F, Liberale L, Bonaventura A, Vecchiè A, Casula M, Cea M, et al. Regulation and function of extracellular nicotinamide phosphoribosyltransferase/visfatin. Compr Physiol. 2017;7(2):603–21.

    Article  PubMed  Google Scholar 

  47. Annie L, Gurusubramanian G, Roy VK. Inhibition of visfatin/NAMPT affects ovarian proliferation, apoptosis, and steroidogenesis in pre-pubertal mice ovary. J Steroid Biochem Mol Biol. 2020;204:105763.

    Article  CAS  PubMed  Google Scholar 

  48. Nickel J, Mueller TD. Specification of BMP Signaling. Cells. 2019;8(12):1579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Otsuka F. Interaction of melatonin and BMP-6 in ovarian steroidogenesis. Vitam Horm. 2018;107:137–53.

    Article  CAS  PubMed  Google Scholar 

  50. Bai L, Chang HM, Zhang L, Zhu YM, Leung PCK. BMP2 increases the production of BDNF through the upregulation of proBDNF and furin expression in human granulosa-lutein cells. Faseb J. 2020;34(12):16129–43.

    Article  CAS  PubMed  Google Scholar 

  51. Beenken A, Mohammadi M. The FGF family: biology, pathophysiology and therapy. Nat Rev Drug Discov. 2009;8(3):235–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hui Q, Jin Z, Li X, Liu C, Wang X. FGF family: from drug development to clinical application. Int J Mol Sci. 2018;19(7):1875.

    Article  PubMed  PubMed Central  Google Scholar 

  53. da Silva RB, Yang MY, Caixeta ES, Castilho AC, Amorim RL, Price CA, et al. Fibroblast growth factor 18 regulates steroidogenesis in fetal bovine ovarian tissue in vitro. Mol Reprod Dev. 2019;86(2):166–74.

    Article  PubMed  Google Scholar 

  54. Shrikhande L, Shrikhande B, Shrikhande A. AMH and its clinical implications. J Obstet Gynaecol India. 2020;70(5):337–41.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Mercati F, Scocco P, Maranesi M, Acuti G, Petrucci L, Cocci P, et al. Apelin system detection in the reproductive apparatus of ewes grazing on semi-natural pasture. Theriogenology. 2019;139:156–66.

    Article  CAS  PubMed  Google Scholar 

  56. Antushevich H, Wójcik M. Review: Apelin in disease. Clin Chim Acta. 2018;483:241–8.

    Article  CAS  PubMed  Google Scholar 

  57. Roche J, Ramé C, Reverchon M, Mellouk N, Cornuau M, Guerif F, et al. Apelin (APLN) and apelin receptor (APLNR) in human ovary: expression, signaling, and regulation of steroidogenesis in primary human luteinized granulosa cells. Biol Reprod. 2016;95(5):104.

    Article  PubMed  Google Scholar 

  58. George FW, Ojeda SR. Vasoactive intestinal peptide enhances aromatase activity in the neonatal rat ovary before development of primary follicles or responsiveness to follicle-stimulating hormone. Proc Natl Acad Sci USA. 1987;84(16):5803–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Fang L, Yu Y, Li Y, Wang S, Zhang R, Guo Y, et al. Human chorionic gonadotropin-induced amphiregulin stimulates aromatase expression in human granulosa-lutein cells: a mechanism for estradiol production in the luteal phase. Hum Reprod. 2019;34(10):2018–26.

    Article  CAS  PubMed  Google Scholar 

  60. Kovall RA, Gebelein B, Sprinzak D, Kopan R. The canonical notch signaling pathway: structural and biochemical insights into shape, sugar, and force. Dev Cell. 2017;41(3):228–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gaiano N, Fishell G. The role of notch in promoting glial and neural stem cell fates. Annu Rev Neurosci. 2002;25:471–90.

    Article  CAS  PubMed  Google Scholar 

  62. Prasasya RD, Mayo KE. Notch signaling regulates differentiation and steroidogenesis in female mouse ovarian granulosa cells. Endocrinology. 2018;159(1):184–98.

    Article  CAS  PubMed  Google Scholar 

  63. George RM, Hahn KL, Rawls A, Viger RS, Wilson-Rawls J. Notch signaling represses GATA4-induced expression of genes involved in steroid biosynthesis. Reproduction. 2015;150(4):383–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wang Y, Lu E, Bao R, Xu P, Feng F, Wen W, et al. Notch signalling regulates steroidogenesis in mouse ovarian granulosa cells. Reprod Fertil Dev. 2019;31(6):1091–103.

    Article  CAS  PubMed  Google Scholar 

  65. Clevers H, Nusse R. Wnt/β-catenin signaling and disease. Cell. 2012;149(6):1192–205.

    Article  CAS  PubMed  Google Scholar 

  66. Wang HX, Tekpetey FR, Kidder GM. Identification of WNT/beta-CATENIN signaling pathway components in human cumulus cells. Mol Hum Reprod. 2009;15(1):11–7.

    Article  PubMed  Google Scholar 

  67. Coego A, Brizuela E, Castillejo P, Ruíz S, Koncz C, del Pozo JC, et al. The TRANSPLANTA collection of Arabidopsis lines: a resource for functional analysis of transcription factors based on their conditional overexpression. Plant J. 2014;77(6):944–53.

    Article  CAS  PubMed  Google Scholar 

  68. Cazzaniga A, Locatelli L, Castiglioni S. The contribution of EDF1 to PPARγ transcriptional activation in VEGF-treated human endothelial cells. Int J Mol Sci. 2018;19(7):1830.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Feng F, Wang J, Bao R, Li L, Tong X, Han S, et al. LncPrep + 96kb 2.2 kb inhibits estradiol secretion from granulosa cells by inducing EDF1 translocation. Front Cell Dev Biol. 2020;8:481.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Meinsohn MC, Smith OE, Bertolin K, Murphy BD. The orphan nuclear receptors steroidogenic factor-1 and liver receptor homolog-1: structure, regulation, and essential roles in mammalian reproduction. Physiol Rev. 2019;99(2):1249–79.

    Article  CAS  PubMed  Google Scholar 

  71. Yazawa T, Imamichi Y, Miyamoto K, Khan MR, Uwada J, Umezawa A, et al. Regulation of steroidogenesis, development, and cell differentiation by steroidogenic factor-1 and liver receptor homolog-1. Zool Sci. 2015;32(4):323–30.

    Article  CAS  Google Scholar 

  72. Mevel R, Draper JE. RUNX transcription factors: orchestrators of development. Development. 2019;146(17):dev148296.

    Article  PubMed  Google Scholar 

  73. Ojima F, Saito Y, Tsuchiya Y, Kayo D, Taniuchi S, Ogoshi M, et al. Runx3 transcription factor regulates ovarian functions and ovulation in female mice. J Reprod Dev. 2016;62(5):479–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ojima F, Saito Y, Tsuchiya Y, Ogoshi M, Fukamachi H, Inagaki K, et al. Runx3 regulates folliculogenesis and steroidogenesis in granulosa cells of immature mice. Cell Tissue Res. 2019;375(3):743–54.

    Article  CAS  PubMed  Google Scholar 

  75. Prathibha Y, Senthilkumaran B. Involvement of pax2 in ovarian development and recrudescence of catfish: a role in steroidogenesis. J Endocrinol. 2016;231(3):181–95.

    Article  CAS  PubMed  Google Scholar 

  76. Ghaleb AM, Yang VW. Krüppel-like factor 4 (KLF4): What we currently know. Gene. 2017;611:27–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Choi H, Ryu KY, Roh J. Krüppel-like factor 4 plays a role in the luteal transition in steroidogenesis by downregulating Cyp19A1 expression. Am J Physiol Endocrinol Metab. 2019;316(6):E1071–80.

    Article  CAS  PubMed  Google Scholar 

  78. Lorente-Sorolla J, Truchado-Garcia M, Perry KJ, Henry JQ, Grande C. Molecular, phylogenetic and developmental analyses of Sall proteins in bilaterians. EvoDevo. 2018;9:9.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Zhu H, Qin N, Xu X, Sun X, Chen X, Zhao J, et al. Synergistic inhibition of csal1 and csal3 in granulosa cell proliferation and steroidogenesis of hen ovarian prehierarchical development†. Biol Reprod. 2019;101(5):986–1000.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Semenza GL. Hypoxia-inducible factor 1 and cardiovascular disease. Annu Rev Physiol. 2014;76:39–56.

    Article  CAS  PubMed  Google Scholar 

  81. Baddela VS, Sharma A, Michaelis M, Vanselow J. HIF1 driven transcriptional activity regulates steroidogenesis and proliferation of bovine granulosa cells. Sci Rep. 2020;10(1):3906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Shimba S, Ishii N, Ohta Y, Ohno T, Watabe Y, Hayashi M, et al. Brain and muscle Arnt-like protein-1 (BMAL1), a component of the molecular clock, regulates adipogenesis. Proc Natl Acad Sci USA. 2005;102(34):12071–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Trott AJ, Menet JS. Regulation of circadian clock transcriptional output by CLOCK:BMAL1. PLoS Genet. 2018;14(1):e1007156.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Zhang J, Liu J, Zhu K, Hong Y, Sun Y, Zhao X, et al. Effects of BMAL1-SIRT1-positive cycle on estrogen synthesis in human ovarian granulosa cells: an implicative role of BMAL1 in PCOS. Endocrine. 2016;53(2):574–84.

    Article  CAS  PubMed  Google Scholar 

  85. Man Y, Zhao R, Gao X, Liu Y, Zhao S, Lu G, et al. TOX3 promotes ovarian estrogen synthesis: an RNA-sequencing and network study. Front Endocrinol (Lausanne). 2020;11:615846.

    Article  PubMed  Google Scholar 

  86. Bhardwaj J, Saraf P. Influence of toxic chemicals on female reproduction: a review. Cell Biol Res Ther. 2014;1:2.

    Google Scholar 

  87. Bhardwaj JK, Mittal M, Saraf P, Kumari P. Pesticides induced oxidative stress and female infertility: a review. Toxin Rev. 2020;39(1):1–13. https://doi.org/10.1080/15569543.2018.1474926.

    Article  CAS  Google Scholar 

  88. Bhardwaj JK, Mittal M, Saraf P. Effective attenuation of glyphosate-induced oxidative stress and granulosa cell apoptosis by vitamins C and E in caprines. Mol Reprod Dev. 2019;86(1):42–52. https://doi.org/10.1002/mrd.23084.

    Article  CAS  PubMed  Google Scholar 

  89. Singh K, Raparia S, Bhardwaj JK, Saraf P. Metal (II) complexes as potent apoptosis inducers in testicular germ cells of Capra hircus. J Appl Chem. 2018;7(1):165–76.

    Google Scholar 

  90. Annabi A, Said K, Messaoudi I. Heavy metal levels in gonad and liver tissues-effects on the reproductive parameters of natural populations of Aphanius facsiatus. Environ Sci Pollut Res Int. 2013;20(10):7309–19.

    Article  CAS  PubMed  Google Scholar 

  91. Das S, Mukherjee D. Effect of cadmium chloride on secretion of 17β-estradiol by the ovarian follicles of common carp, Cyprinus carpio. Gen Comp Endocrinol. 2013;181:107–14.

    Article  CAS  PubMed  Google Scholar 

  92. Bhardwaj JK, Saraf P. Pesticides induced infertility targeting ovarian granulosa cells. Org Med Chem Int J. 2017;4(2):27–30.

    Google Scholar 

  93. Bhardwaj JK, Saraf P. Morphological attributes of granulosa cells perpetuating functional integrity of an ovarian follicle. J Adv Microsc Res. 2017;12(2):92–6.

    Article  Google Scholar 

  94. Zhang C, Schilirò T, Gea M, Bianchi S, Spinello A, Magistrato A, et al. Molecular basis for endocrine disruption by pesticides targeting aromatase and estrogen receptor. Int J Environ Res Public Health. 2020;17(16):5664.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Bhardwaj J, Kumari P, Saraf P, Mittal M, Yadav A. Male infertility owing to pesticide poisoning and antioxidant induced amelioration: a review. J Cell Tissue Res. 2017;17(3):6307–14.

    CAS  Google Scholar 

  96. Bhardwaj JK, Kumari P, Saraf P, Yadav AS. Antiapoptotic effects of vitamins C and E against cypermethrin-induced oxidative stress and spermatogonial germ cell apoptosis. J Biochem Mol Toxicol. 2018;32(8):e22174.

    Article  PubMed  Google Scholar 

  97. Bhardwaj JK, Saraf P, Kumari P, Mittal M, Kumar V. N-Acetyl-cysteine mediated inhibition of spermatogonial cells apoptosis against malathion exposure in testicular tissue. J Biochem Mol Toxicol. 2018;32(4):e22046.

    Article  PubMed  Google Scholar 

  98. Simon V, Avet C, Grange-Messent V, Wargnier R, Denoyelle C, Pierre A, et al. Carbon black nanoparticles inhibit aromatase expression and estradiol secretion in human granulosa cells through the ERK1/2 pathway. Endocrinology. 2017;158(10):3200–11.

    Article  CAS  PubMed  Google Scholar 

  99. Liu Y, Wang L, Zhu L, Ran B, Wang Z. Bisphenol A disturbs transcription of steroidogenic genes in ovary of rare minnow Gobiocypris rarus via the abnormal DNA and histone methylation. Chemosphere. 2020;240:124935.

    Article  CAS  PubMed  Google Scholar 

  100. Fan G, Zhang Q, Wan Y, Lv F, Chen Y, Ni Y, et al. Decreased levels of H3K9ac and H3K27ac in the promotor region of ovarian P450 aromatase mediated low estradiol synthesis in female offspring rats induced by prenatal nicotine exposure as well as in human granulosa cells after nicotine treatment. Food Chem Toxicol. 2019;128:256–66.

    Article  CAS  PubMed  Google Scholar 

  101. Lerner LJ, Jordan VC. Development of antiestrogens and their use in breast cancer: eighth Cain memorial award lecture. Cancer Res. 1990;50(14):4177–89.

    CAS  PubMed  Google Scholar 

  102. Mao Y, Wu X, An L, Li X, Li Z, Zhu G. Tamoxifen activates hypothalamic l-dopa synthesis to stimulate ovarian estrogen production in chicken. Biochem Biophys Res Commun. 2018;496(4):1257–62.

    Article  CAS  PubMed  Google Scholar 

  103. Buzás GM. Fructose and fructose intolerance. Orv Hetil. 2016;157(43):1708–16.

    Article  PubMed  Google Scholar 

  104. Munetsuna E, Yamada H, Yamazaki M, Ando Y, Mizuno G, Ota T, et al. Maternal fructose intake disturbs ovarian estradiol synthesis in rats. Life Sci. 2018;202:117–23.

    Article  CAS  PubMed  Google Scholar 

  105. de La Puente-Yagüe M, Cuadrado-Cenzual MA, Ciudad-Cabañas MJ, Hernández-Cabria M, Collado-Yurrita L. Vitamin D: And its role in breast cancer. Kaohsiung J Med Sci. 2018;34(8):423–7.

    Article  PubMed  Google Scholar 

  106. Bakhshalizadeh S, Amidi F, Shirazi R, Shabani NM. Vitamin D3 regulates steroidogenesis in granulosa cells through AMP-activated protein kinase (AMPK) activation in a mouse model of polycystic ovary syndrome. Cell Biochem Funct. 2018;36(4):183–93.

    Article  CAS  PubMed  Google Scholar 

  107. Endo T, Mikedis MM, Nicholls PK, Page DC, de Rooij DG. Retinoic acid and germ cell development in the ovary and testis. Biomolecules. 2019;9(12):775.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Damdimopoulou P, Chiang C, Flaws JA. Retinoic acid signaling in ovarian folliculogenesis and steroidogenesis. Reprod Toxicol. 2019;87:32–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Assisi L, Botte V, D’Aniello A, Di Fiore MM. Enhancement of aromatase activity by D-aspartic acid in the ovary of the lizard Podarcis s. sicula. Reproduction. 2001;121(5):803–8.

    Article  CAS  PubMed  Google Scholar 

  110. Lin ZH, Jin J, Shan XY. The effects of estradiol on inflammatory and endothelial dysfunction in rats with preeclampsia. Int J Mol Med. 2020;45(3):825–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Sarrel PM, Sullivan SD, Nelson LM. Hormone replacement therapy in young women with surgical primary ovarian insufficiency. Fertil Steril. 2016;106(7):1580–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Sullivan SD, Sarrel PM, Nelson LM. Hormone replacement therapy in young women with primary ovarian insufficiency and early menopause. Fertil Steril. 2016;106(7):1588–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study is funded by the National Natural Science Foundation of China, grant number: 81601242 and 81960272.

Author information

Authors and Affiliations

Authors

Contributions

Chuyu Xiao executed and drafted the manuscript. Jing Wang made critical discussion about the study. Chunping Zhang designed the study. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Chunping Zhang.

Ethics declarations

Ethics Approval and Consent to Participate

That is not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, C., Wang, J. & Zhang, C. Synthesis, Regulatory Factors, and Signaling Pathways of Estrogen in the Ovary. Reprod. Sci. 30, 350–360 (2023). https://doi.org/10.1007/s43032-022-00932-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-022-00932-z

Keywords

Navigation