Skip to main content

Advertisement

Log in

Identification of Circular RNA circ_0017068 as a Regulator of Proliferation and Apoptosis in Trophoblast Cells by miR-330-5p/XIAP Axis

  • Reproductive Endocrinology: Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Preeclampsia (PE) is a major and serious complication of pregnancy. Circular RNAs (circRNAs) have been implicated in the initiation and progression of PE. In this paper, we explored the precise actions of circ_0017068 in trophoblast cell functional properties. Ribonuclease (RNase) R, and Actinomycin D treatments were used to characterize circ_0017068. The levels of circ_0017068, microRNA (miR)-330-5p and X-linked inhibitor of apoptosis protein (XIAP) were measured by quantitative real-time polymerase chain reaction (qRT-PCR) or western blot analysis. Cell proliferation, cell cycle progression, and apoptosis were gauged by the Cell Counting Kit-8 (CCK-8), 5-ethynyl-2′-deoxyuridine (EdU), and flow cytometry assays, respectively. Direct relationship between miR-330-5p and circ_0017068 or XIAP was validated by dual-luciferase reporter and RNA immunoprecipitation (RIP) assays. Our data showed that circ_0017068 was downregulated in PE placental samples. Enforced expression of circ_0017068 promoted HTR-8/SVneo cell proliferation, cycle progression, and suppressed apoptosis, while silencing of circ_0017068 exhibited opposite effects. Mechanistically, circ_0017068 targeted miR-330-5p, and circ_0017068 regulated proliferation, cycle progression, and apoptosis of HTR-8/SVneo cells through miR-330-5p. Moreover, XIAP was identified as a direct and functional target of miR-330-5p. Furthermore, circ_0017068 operated as a post-transcriptional regulator of XIAP expression through miR-330-5p. Our study identifies circ_0017068 as an important regulator of the proliferation and apoptosis of HTR-8/SVneo trophoblast cells at least in part by miR-330-5p-dependent regulation of XIAP, highlighting circ_0017068 as a potential therapeutic agent for PE treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of Data and Material

Please contact the correspondence author for the data request.

References

  1. Ramos JGL, Sass N, Costa SHM. Preeclampsia. Rev Bras Ginecol Obstet. 2017;39(9):496–512. https://doi.org/10.1055/s-0037-1604471.

    Article  PubMed  Google Scholar 

  2. Filipek A, Jurewicz E. [Preeclampsia - a disease of pregnant women]. Postepy Biochem. 2018;64(4):232–229. https://doi.org/10.18388/pb.2018_146

  3. Tranquilli AL, Brown MA, Zeeman GG, Dekker G, Sibai BM. The definition of severe and early-onset preeclampsia. Statements from the International Society for the Study of Hypertension in Pregnancy (ISSHP). Pregnancy Hypertens. 2013;3(1):44–47. https://doi.org/10.1016/j.preghy.2012.11.001

  4. Pennington KA, Schlitt JM, Jackson DL, Schulz LC, Schust DJ. Preeclampsia: multiple approaches for a multifactorial disease. Dis Model Mech. 2012;5(1):9–18. https://doi.org/10.1242/dmm.008516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rana S, Lemoine E, Granger JP, Karumanchi SA. Preeclampsia: pathophysiology, challenges, and perspectives. Circ Res. 2019;124(7):1094–112. https://doi.org/10.1161/circresaha.118.313276.

    Article  CAS  PubMed  Google Scholar 

  6. Shafabakhsh R, Mirhosseini N, Chaichian S, Moazzami B, Mahdizadeh Z, Asemi Z. Could circRNA be a new biomarker for pre-eclampsia? Mol Reprod Dev. 2019;86(12):1773–80. https://doi.org/10.1002/mrd.23262.

    Article  CAS  PubMed  Google Scholar 

  7. Jia N, Li J. Role of circular RNAs in preeclampsia. Dis Markers. 2019;2019:7237495. https://doi.org/10.1155/2019/7237495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kristensen LS, Andersen MS, Stagsted LVW, Ebbesen KK, Hansen TB, Kjems J. The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet. 2019;20(11):675–91. https://doi.org/10.1038/s41576-019-0158-7.

    Article  CAS  PubMed  Google Scholar 

  9. Ojha R, Nandani R, Chatterjee N, Prajapati VK. Emerging role of circular RNAs as potential biomarkers for the diagnosis of human diseases. Adv Exp Med Biol. 2018;1087:141–57. https://doi.org/10.1007/978-981-13-1426-1_12.

    Article  CAS  PubMed  Google Scholar 

  10. Jiang M, Lash GE, Zhao X, Long Y, Guo C, Yang H. CircRNA-0004904, CircRNA-0001855, and PAPP-A: potential novel biomarkers for the prediction of preeclampsia. Cell Physiol Biochem. 2018;46(6):2576–86. https://doi.org/10.1159/000489685.

    Article  CAS  PubMed  Google Scholar 

  11. Ou Y, Zhu L, Wei X, Bai S, Chen M, Chen H, et al. Circular RNA circ_0111277 attenuates human trophoblast cell invasion and migration by regulating miR-494/HTRA1/Notch-1 signal pathway in pre-eclampsia. Cell Death Dis. 2020;11(6):479. https://doi.org/10.1038/s41419-020-2679-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhou W, Wang H, Yang J, Long W, Zhang B, Liu J, et al. Down-regulated circPAPPA suppresses the proliferation and invasion of trophoblast cells via the miR-384/STAT3 pathway. Biosci Rep. 2019;39(9). https://doi.org/10.1042/bsr20191965

  13. Deng N, Lei D, Huang J, Yang Z, Fan C, Wang S. Circular RNA expression profiling identifies hsa_circ_0011460 as a novel molecule in severe preeclampsia. Pregnancy Hypertens. 2019;17:216–25. https://doi.org/10.1016/j.preghy.2019.06.009.

    Article  PubMed  Google Scholar 

  14. Iwakawa HO, Tomari Y. The functions of MicroRNAs: mRNA decay and translational repression. Trends Cell Biol. 2015;25(11):651–65. https://doi.org/10.1016/j.tcb.2015.07.011.

    Article  CAS  PubMed  Google Scholar 

  15. Laganà AS, Vitale SG, Sapia F, Valenti G, Corrado F, Padula F, et al. miRNA expression for early diagnosis of preeclampsia onset: hope or hype? J Matern Fetal Neonatal Med. 2018;31(6):817–21. https://doi.org/10.1080/14767058.2017.1296426.

    Article  CAS  PubMed  Google Scholar 

  16. Skalis G, Katsi V, Miliou A, Georgiopoulos G, Papazachou O, Vamvakou G, et al. MicroRNAs in preeclampsia. Microrna. 2019;8(1):28–35. https://doi.org/10.2174/2211536607666180813123303.

    Article  CAS  PubMed  Google Scholar 

  17. Frazier S, McBride MW, Mulvana H, Graham D. From animal models to patients: the role of placental microRNAs, miR-210, miR-126, and miR-148a/152 in preeclampsia. Clin Sci (Lond). 2020;134(8):1001–25. https://doi.org/10.1042/cs20200023.

    Article  CAS  Google Scholar 

  18. Xueya Z, Yamei L, Sha C, Dan C, Hong S, Xingyu Y, et al. Exosomal encapsulation of miR-125a-5p inhibited trophoblast cell migration and proliferation by regulating the expression of VEGFA in preeclampsia. Biochem Biophys Res Commun. 2020;525(3):646–53. https://doi.org/10.1016/j.bbrc.2020.02.137.

    Article  CAS  PubMed  Google Scholar 

  19. Yang W, Lu Z, Zhi Z, Liu L, Deng L, Jiang X, et al. Increased miRNA-518b inhibits trophoblast migration and angiogenesis by targeting EGR1 in early embryonic arrest†. Biol Reprod. 2019;101(4):664–74. https://doi.org/10.1093/biolre/ioz109.

    Article  PubMed  Google Scholar 

  20. Zhang Y, Zhang M. lncRNA SNHG14 involved in trophoblast cell proliferation, migration, invasion and epithelial-mesenchymal transition by targeting miR-330-5p in preeclampsia. Zygote. 2021;29(2):108–17. https://doi.org/10.1017/s0967199420000507.

    Article  PubMed  Google Scholar 

  21. Cheung CHA, Chang YC, Lin TY, Cheng SM, Leung E. Anti-apoptotic proteins in the autophagic world: an update on functions of XIAP, Survivin, and BRUCE. J Biomed Sci. 2020;27(1):31. https://doi.org/10.1186/s12929-020-0627-5.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Arroyo J, Price M, Straszewski-Chavez S, Torry RJ, Mor G, Torry DS. XIAP protein is induced by placenta growth factor (PLGF) and decreased during preeclampsia in trophoblast cells. Syst Biol Reprod Med. 2014;60(5):263–73. https://doi.org/10.3109/19396368.2014.927540.

    Article  CAS  PubMed  Google Scholar 

  23. Li L, Hou A, Gao X, Zhang J, Zhang L, Wang J, et al. Lentivirus-mediated miR-23a overexpression induces trophoblast cell apoptosis through inhibiting X-linked inhibitor of apoptosis. Biomed Pharmacother. 2017;94:412–7. https://doi.org/10.1016/j.biopha.2017.07.082.

    Article  CAS  PubMed  Google Scholar 

  24. Zhang Y, Cao L, Jia J, Ye L, Wang Y, Zhou B, et al. CircHIPK3 is decreased in preeclampsia and affects migration, invasion, proliferation, and tube formation of human trophoblast cells. Placenta. 2019;85:1–8. https://doi.org/10.1016/j.placenta.2019.07.010.

    Article  CAS  PubMed  Google Scholar 

  25. Zhou B, Zhang X, Li T, Xie R, Zhou J, Luo Y, et al. CircZDHHC20 represses the proliferation, migration and invasion in trophoblast cells by miR-144/GRHL2 axis. Cancer Cell Int. 2020;20:19. https://doi.org/10.1186/s12935-020-1097-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Feng L, Ma J, Ji H, Liu Y, Hu W. miR-330-5p suppresses glioblastoma cell proliferation and invasiveness through targeting ITGA5. Biosci Rep. 2017;37(3). https://doi.org/10.1042/bsr20170019

  27. Cheng H, Wang N, Tian J, Li Y, Ren L, Shi Z. Circular RNA Circ_0025033 promotes the evolvement of ovarian cancer through the regulation of miR-330-5p/KLK4 Axis. Cancer Manag Res. 2020;12:2753–65. https://doi.org/10.2147/cmar.s241372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Xiao S, Yang M, Yang H, Chang R, Fang F, Yang L. miR-330-5p targets SPRY2 to promote hepatocellular carcinoma progression via MAPK/ERK signaling. Oncogenesis. 2018;7(11):90. https://doi.org/10.1038/s41389-018-0097-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sun J, Huang Q, Li S, Meng F, Li X, Gong X. miR-330-5p/Tim-3 axis regulates macrophage M2 polarization and insulin resistance in diabetes mice. Mol Immunol. 2018;95:107–13. https://doi.org/10.1016/j.molimm.2018.02.006.

    Article  CAS  PubMed  Google Scholar 

  30. Zuo W, Tian R, Chen Q, Wang L, Gu Q, Zhao H, et al. miR-330-5p inhibits NLRP3 inflammasome-mediated myocardial ischaemia-reperfusion injury by targeting TIM3. Cardiovasc Drugs Ther. 2020. https://doi.org/10.1007/s10557-020-07104-8.

    Article  PubMed  Google Scholar 

  31. Tong J, Yang J, Lv H, Lv S, Zhang C, Chen ZJ. Dysfunction of pseudogene PGK1P2 is involved in preeclampsia by acting as a competing endogenous RNA of PGK1. Pregnancy Hypertens. 2018;13:37–45. https://doi.org/10.1016/j.preghy.2018.05.003.

    Article  PubMed  Google Scholar 

  32. Zhang Y, Zhang M. lncRNA SNHG14 involved in trophoblast cell proliferation, migration, invasion and epithelial-mesenchymal transition by targeting miR-330–5p in preeclampsia. Zygote. 2020:1–10. https://doi.org/10.1017/s0967199420000507

  33. Tu H, Costa M. XIAP’s profile in human cancer. Biomolecules. 2020;10(11). https://doi.org/10.3390/biom10111493

  34. Jeon SY, Lee HJ, Na KH, Cha DH, Kim JK, Park JW, et al. Hypoxia-induced downregulation of XIAP in trophoblasts mediates apoptosis via interaction with IMUP-2: implications for placental development during pre-eclampsia. J Cell Biochem. 2013;114(1):89–98. https://doi.org/10.1002/jcb.24304.

    Article  CAS  PubMed  Google Scholar 

  35. Jost PJ, Vucic D. Regulation of cell death and immunity by XIAP. Cold Spring Harb Perspect Biol. 2020;12(8). https://doi.org/10.1101/cshperspect.a036426

  36. Herse F, LaMarca B. Angiotensin II type 1 receptor autoantibody (AT1-AA)-mediated pregnancy hypertension. Am J Reprod Immunol. 2013;69(4):413–8. https://doi.org/10.1111/aji.12072.

    Article  CAS  PubMed  Google Scholar 

  37. Li M, Wu ZM, Yang H, Huang SJ. NFκB and JNK/MAPK activation mediates the production of major macrophage- or dendritic cell-recruiting chemokine in human first trimester decidual cells in response to proinflammatory stimuli. J Clin Endocrinol Metab. 2011;96(8):2502–11. https://doi.org/10.1210/jc.2011-0055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenzhi Wang.

Ethics declarations

Ethics Approval

Written informed consent was obtained from the patients with approval by the Institutional Review Board in Shaanxi Provincial People’s Hospital.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 171 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Shi, J. & Zheng, L. Identification of Circular RNA circ_0017068 as a Regulator of Proliferation and Apoptosis in Trophoblast Cells by miR-330-5p/XIAP Axis. Reprod. Sci. 29, 2414–2427 (2022). https://doi.org/10.1007/s43032-021-00827-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-021-00827-5

Keywords

Navigation