Skip to main content

Advertisement

Log in

When Should We Freeze Embryos? Current Data for Fresh and Frozen Embryo Replacement IVF Cycles

  • Review
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Recent years have seen a dramatic rise in the number of frozen–thawed embryo replacement (FER) cycles. Along with the advances in embryo cryopreservation techniques, the optimization of endometrial receptivity has resulted in outcomes for FER that are similar to fresh embryo transfer. However, the question of whether the Freeze all strategy is for all is nowadays a hot topic. This review addresses this issue and describes current evidence based on randomized controlled trials and observational studies. To date, it is reasonable to perform FER in cases with a clear indication for the benefits of such strategy including impending ovarian hyperstimulation syndrome (OHSS) or preimplantation genetic testing for aneuploidy (PGT-A); however, this strategy does not fit for all. This review analyses the pros and cons of the freeze all strategy highlighting the need to follow a personalized plan in embryo transfer, avoiding a freeze all methodology for all patients in an unselected manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

This is a review article; availability of data and material is not required.

References

  1. Trounson A, Mohr L. Human pregnancy following cryopreservation, thawing and transfer of an eight-cell embryo. Nature. 1983;305:707–9.

    Article  CAS  PubMed  Google Scholar 

  2. Zeilmaker GH, Alberda AT, van Gent I, Rijkmans CM, Drogendijk AC. Two pregnancies following transfer of intact frozen–thawed embryos. Fertil Steril. 1984;42:293–6.

    Article  CAS  PubMed  Google Scholar 

  3. Achache H, Revel A. Endometrial receptivity markers, the journey to successful embryo implantation. Hum Reprod Update. 2006;12:731–46.

    Article  PubMed  Google Scholar 

  4. Lessey BA, Killam AP, Metzger DA, Haney AF, Greene GL, McCarty KS Jr. Immunohistochemical analysis of human uterine estrogen and progesterone receptors throughout the menstrual cycle. J Clin Endocrinol Metab. 1988;67:334–40.

    Article  CAS  PubMed  Google Scholar 

  5. Lessey BA. Assessment of endometrial receptivity. Fertil Steril. 2011;96:522–9.

    Article  CAS  PubMed  Google Scholar 

  6. Al-Azemi M, Kyrou D, Kolibianakis EM, Humaidan P, van Vaerenbergh I, Devroey P, et al. Elevated progesterone during ovarian stimulation for IVF. Reprod BioMed Online. 2012;24:381–8.

    Article  CAS  PubMed  Google Scholar 

  7. Bosch E, Labarta E, Crespo J, Simon C, Remohi J, Jenkins J, et al. Circulating progesterone levels and ongoing pregnancy rates in controlled ovarian stimulation cycles for in vitro fertilization: analysis of over 4000 cycles. Hum Reprod. 2010;25:2092–100.

    Article  CAS  PubMed  Google Scholar 

  8. Shapiro BS, Daneshmand ST, Garner FC, Aguirre M, Hudson C, Thomas S. Embryo cryopreservation rescues cycles with premature luteinization. Fertil Steril. 2010;93:636–41.

    Article  CAS  PubMed  Google Scholar 

  9. Polotsky AJ, Daif JL, Jindal S, Lieman HJ, Santoro N, Pal L. Serum progesterone on the day of human chorionic gonadotropin administration predicts clinical pregnancy of sibling frozen embryos. Fertil Steril. 2009;92:1880–5.

    Article  CAS  PubMed  Google Scholar 

  10. Noyes RW, Hertig AT, Rock J. Dating the endometrial biopsy. Fertil Steril. 1950;1:3–25.

    Article  Google Scholar 

  11. Cha J, Sun X, Dey SK. Mechanisms of implantation: strategies for successful pregnancy. Nat Med. 2012;18:1754–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mirkin S, Nikas G, Hsiu JG, Diaz J, Oehninger S. Gene expression profiles and structural/functional features of the peri-implantation endometrium in natural and gonadotropin-stimulated cycles. J Clin Endocrinol Metab. 2004;89:5742–52.

    Article  CAS  PubMed  Google Scholar 

  13. Simon C, Oberye J, Bellver J, Vidal C, Bosch E, Horcajadas JA, et al. Similar endometrial development in oocyte donors treated with either high- or standard-dose GnRH antagonist compared to treatment with a GnRH agonist or in natural cycles. Hum Reprod. 2005;20:3318–27.

    Article  CAS  PubMed  Google Scholar 

  14. Horcajadas JA, Minguez P, Dopazo J, Esteban FJ, Dominguez F, Giudice LC, et al. Controlled ovarian stimulation induces a functional genomic delay of the endometrium with potential clinical implications. J Clin Endocrinol Metab. 2008;93:4500–10.

    Article  CAS  PubMed  Google Scholar 

  15. Liu Y, Lee KF, Ng EH, Yeung WS, Ho PC. Gene expression profiling of human peri-implantation endometria between natural and stimulated cycles. Fertil Steril. 2008;90:2152–64.

    Article  CAS  PubMed  Google Scholar 

  16. Haouzi D, Assou S, Mahmoud K, Tondeur S, Reme T, Hedon B, et al. Gene expression profile of human endometrial receptivity: comparison between natural and stimulated cycles for the same patients. Hum Reprod. 2009;24:1436–45.

    Article  CAS  PubMed  Google Scholar 

  17. Chaouat G. Inflammation, NK cells and implantation: friend and foe (the good, the bad and the ugly?): replacing placental viviparity in an evolutionary perspective. J Reprod Immunol. 2013;97:2–13.

    Article  CAS  PubMed  Google Scholar 

  18. Imudia AN, Awonuga AO, Doyle JO, Kaimal AJ, Wright DL, Toth TL, et al. Peak serum oestradiol level during controlled ovarian hyperstimulation is associated with increased risk of small for gestational age and preeclampsia in singleton pregnancies after in vitro fertilization. Fertil Steril. 2012;97:1374–9.

    Article  CAS  PubMed  Google Scholar 

  19. Kalra SK. Adverse perinatal outcome and in vitro fertilization singleton pregnancies: what lies beneath? Further evidence to support an underlying role of the modifiable hormonal milieu in in vitro fertilization stimulation. Fertil Steril. 2012;97:1295–6.

    Article  PubMed  Google Scholar 

  20. Canovas S, Ross PJ, Kelsey G, Coy P. DNA methylation in embryo development: epigenetic impact of ART (assisted reproductive technologies). Bioessays. 2017;39.

  21. Miller PB, Soules MR. The usefulness of a urinary LH kit for ovulation prediction during menstrual cycles of normal women. Obstet Gynecol. 1996;87:13–7.

    Article  CAS  PubMed  Google Scholar 

  22. Ghazeeri GS, Vongprachanh P, Kutteh WH. The predictive value of five different urinary LH kits in detecting the LH surge in regularly menstruating women. Int J Fertil Womens Med. 2000;45:321–6.

    CAS  PubMed  Google Scholar 

  23. Mackens S, Santos-Ribeiro S, van de Vijver A, Racca A, Van Landuyt L, Tournaye H, et al. Frozen embryo transfer: a review on the optimal endometrial preparation and timing. Hum Reprod. 2017;32:2234–42.

    Article  CAS  PubMed  Google Scholar 

  24. Mounce G, McVeigh E, Turner K, Child TJ. Randomized, controlled pilot trial of natural versus hormone replacement therapy cycles in frozen embryo replacement in vitro fertilization. Fertil Steril. 2015;104:915–20 e1.

    Article  CAS  PubMed  Google Scholar 

  25. Bjuresten K, Landgren BM, Hovatta O, Stavreus-Evers A. Luteal phase progesterone increases live birth rate after frozen embryo transfer. Fertil Steril. 2011;95:534–7.

    Article  CAS  PubMed  Google Scholar 

  26. Groenewoud ER, Cohlen BJ, Al-Oraiby A, Brinkhuis EA, Broekmans FJM, de Bruin JP, et al. A randomized controlled, non-inferiority trial of modified natural versus artificial cycle for cryo-thawed embryo transfer. Hum Reprod. 2016;31:1483–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sathanandan M, Macnamee MC, Rainsbury P, Wick K, Brinsden P, Edwards RG. Replacement of frozen-thawed embryos in artificial and natural cycles: a prospective semi-randomized study. Hum Reprod. 1991;6:685–7.

    Article  CAS  PubMed  Google Scholar 

  28. Kim CH, Lee YJ, Lee KH, Kwon SK, Kim SH, Chae HD, et al. The effect of luteal phase progesterone supplementation on natural frozen-thawed embryo transfer cycles. Obstet Gynecol Sci. 2014;57:291–6.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kasius A, Smit JG, Torrance HL, Eijkemans MJC, Mol BW, Opmeer BC, et al. Endometrial thickness and pregnancy rates after IVF: a systematic review and meta-analysis. Hum Reprod Update. 2014;20:530–41.

    Article  PubMed  Google Scholar 

  30. Liu KE, Hartman M, Hartman A, Luo ZC, Mahutte N. The impact of a thin endometrial lining on fresh and frozen-thaw IVF outcomes: an analysis of over 40 000 embryo transfers. Hum Reprod. 2018;33:1883–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. El-Toukhy T, Coomarasamy A, Khairy M, Sunkara K, Seed P, Khalaf Y, et al. The relationship between endometrial thickness and outcome of medicated frozen embryo replacement cycles. Fertil Steril. 2008;89:832–9.

    Article  PubMed  Google Scholar 

  32. Glujovsky D, Pesce R, Fiszbajn G, Sueldo C, Hart RJ, Ciapponi A. Endometrial preparation for women undergoing embryo transfer with frozen embryos or embryos derived from donor oocytes. Cochrane Database Syst Rev. 2010;1:CD006359.

    Google Scholar 

  33. Zolghadri J, Haghbin H, Dadras N, Behdin S. Vagifem is superior to vaginal Premarin in induction of endometrial thickness in the frozen-thawed cycle patients with refractory endometria: a randomized clinical trial. Iran J Reprod Med. 2014;12:415–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. E R, Cohlen BJ, Macklon NS. Programming the endometrium for deferred transfer of cryopreserved embryos: hormone replacement versus modified natural cycles. Fertil Steril. 2018; 109:768–774.

  35. Kyrou D, Fatemi HM, Popovic-Todorovic B, Van den Abbeel E, Camus M, Devroey P. Vaginal progesterone supplementation has no effect on ongoing pregnancy rate in hCG-induced natural frozen–thawed embryo transfer cycles. Eur J Obstet Gynecol Reprod Biol. 2010;150:175–9.

    Article  CAS  PubMed  Google Scholar 

  36. Devine K, Richter KS, Widra EA, McKeeby JL. Vitrified blastocyst transfer cycles with the use of only vaginal progesterone replacement with Endometrin have inferior ongoing pregnancy rates: results from the planned interim analysis of a three-arm randomized controlled noninferiority trial. Fertil Steril. 2018;109:266–75.

    Article  CAS  PubMed  Google Scholar 

  37. Dal Prato L, Borini A, Cattoli M, Bonu MA, Sciajno R, Flamigni C. Endometrial preparation for frozen-thawed embryo transfer with or without pretreatment with gonadotropin-releasing hormone agonist. Fertil Steril. 2002;77:956–60.

    Article  PubMed  Google Scholar 

  38. Azimi Nekoo E, Chamani M, Shahrokh Tehrani E, Hossein Rashidi B, Davari Tanha F, Kalantari V. Artificial endometrial preparation for frozen-thawed embryo transfer with or without pretreatment with depot gonadotropin releasing hormone agonist in women with regular menses. J Family Reprod Health. 2015;9:1–4.

    PubMed  PubMed Central  Google Scholar 

  39. Simon A, Hurwitz A, Zentner BS, Bdolah Y, Laufer N. Transfer of frozen thawed embryos in artificially prepared cycles with and without prior gonadotrophin-releasing hormone agonist suppression: a prospective randomized study. Hum Reprod. 1998;13:2712–7.

    Article  CAS  PubMed  Google Scholar 

  40. El-Toukhy T. Pituitary suppression in ultrasound-monitored frozen embryo replacement cycles. A randomised study. Hum Reprod. 2004;19:874–9.

    Article  CAS  PubMed  Google Scholar 

  41. Wright KP, Guibert J, Weitzen S, Davy C, Fauque P, Olivennes F. Artificial versus stimulated cycles for endometrial preparation prior to frozen thawed embryo transfer. Reprod BioMed Online. 2006;13:321–5.

    Article  PubMed  Google Scholar 

  42. Peeraer K, Couck I, Debrock S, De Neubourg D, De Loecker P, Tomassetti C, et al. Frozen-thawed embryo transfer in a natural or mildly hormonally stimulated cycle in women with regular ovulatory cycles: a RCT. Hum Reprod. 2015;30:2552–62.

    Article  PubMed  Google Scholar 

  43. Yarali H, Polat M, Mumusoglu S, Yarali I, Bozdag G. Preparation of endometrium for frozen embryo replacement cycles: a systematic review and meta-analysis. J Assist Reprod Genet. 2016;33:1287–304.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Venn A, Hemminki E, Watson L, Bruinsma F, Healy D. Mortality in a cohort of IVF patients. Hum Reprod. 2001;16:2691–6.

    Article  CAS  PubMed  Google Scholar 

  45. Braat DD, Schutte JM, Bernardus RE, Mooij TM, van Leeuwen FE. Maternal death related to IVF in the Netherlands 1984–2008. Hum Reprod. 2010;25:1782–6.

    Article  CAS  PubMed  Google Scholar 

  46. McElhinney B, McClure N. Ovarian hyperstimulation syndrome. Baillieres Best Pract Res Clin Obstet Gynaecol. 2000;14:103–22.

    Article  CAS  PubMed  Google Scholar 

  47. Papanikolaou EG, Tournaye H, Verpoest W, Camus M, Vernaeve V, Van Steirteghem A, et al. Early and late ovarian hyperstimulation syndrome: early pregnancy outcome and profile. Hum Reprod. 2005;20:636–41.

    Article  PubMed  Google Scholar 

  48. Mathur RS, Akande AV, Keay SD, Hunt LP, Jenkins JM. Distinction between early and late ovarian hyperstimulation syndrome. Fertil Steril. 2000;73:901–7.

    Article  CAS  PubMed  Google Scholar 

  49. Committee of the American Society for Reproductive Medicine. Prevention and treatment of moderate and severe ovarian hyperstimulation syndrome: a guideline. Fertil Steril. 2016;106:1634–47.

    Article  Google Scholar 

  50. Endo T, Honnma H, Hayashi T, Chida M, Yamazaki K, Kitajima Y, et al. Continuation of GnRH agonist administration for 1 week, after hCG injection, prevents ovarian hyperstimulation syndrome following elective cryopreservation of all pronucleate embryos. Hum Reprod. 2002;17:2548–51.

    Article  CAS  PubMed  Google Scholar 

  51. Shaker AG, Zosmer A, Dean N, Bekir JS, Jacobs HS, Tan SL. Comparison of intravenous albumin and transfer of fresh embryos with cryopreservation of all embryos for subsequent transfer in prevention of ovarian hyperstimulation syndrome. Fertil Steril. 1996;65:992–6.

    Article  CAS  PubMed  Google Scholar 

  52. Ferraretti AP, Gianaroli L, Magli C, Fortini D, Selman HA, Feliciani E. Elective cryopreservation of all pronucleate embryos in women at risk of ovarian hyperstimulation syndrome: efficiency and safety. Hum Reprod. 1999;14:1457–60.

    Article  CAS  PubMed  Google Scholar 

  53. Shapiro BS, Daneshmand ST, Garner FC, Aguirre M, Hudson C, Thomas S. Evidence of impaired endometrial receptivity after ovarian stimulation for in vitro fertilization: a prospective randomized trial comparing fresh and frozen-thawed embryo transfers in high responders. Fertil Steril. 2011;96:516–8.

    Article  PubMed  Google Scholar 

  54. Chen Z-J, Shi Y, Sun Y, Zhang B, Liang X, Cao Y, et al. Fresh versus frozen embryos for infertility in the polycystic ovary syndrome. N Engl J Med. 2016;375:523–33.

    Article  PubMed  Google Scholar 

  55. Acharya KS, Acharya CR, Bishop K, Harris B, Raburn D, Muasher SJ. Freezing of all embryos in in vitro fertilization is beneficial in high responders, but not intermediate and low responders: an analysis of 82,935 cycles from the Society for Assisted Reproductive Technology registry. Fertil Steril. 2018;110:880–7.

    Article  PubMed  Google Scholar 

  56. Wong M, van Wely M, Mol F, Repping S, Mastenbroek S. Fresh versus frozen embryo transfers in assisted reproduction. Cochrane Database Syst Rev. 2017;3:cd011184.

    PubMed  Google Scholar 

  57. Roque M, Haahr T, Geber S, Esteves SC, Humaidan P. Fresh versus elective frozen embryo transfer in IVF/ICSI cycles: a systematic review and meta-analysis of reproductive outcomes. Hum Reprod Update. 2019;25:2–14.

    Article  PubMed  Google Scholar 

  58. Practice Committees of the American Society for Reproductive Medicine and the Society for Assisted Reproductive Technology. Electronic address: ASRM@asrm.org; Practice Committees of the American Society for Reproductive Medicine and the Society for Assisted Reproductive Technology. The use of preimplantation genetic testing for aneuploidy (PGT-A): a committee opinion. Fertil Steril. 2018; 109:429-36.

  59. Roque M, Valle M, Guimaraes F, Sampaio M, Geber S. Freeze-all policy: fresh vs. frozen-thawed embryo transfer. Fertil Steril. 2015;103:1190–3.

    Article  PubMed  Google Scholar 

  60. Bhattacharya S. Maternal and perinatal outcomes after fresh versus frozen embryo transfer-what is the risk-benefit ratio? Fertil Steril. 2016;106:241–3.

    Article  PubMed  Google Scholar 

  61. Evans J, Hannan NJ, Edgell TA, Vollenhoven BJ, Lutjen PJ, Osianlis T, et al. Fresh versus frozen embryo transfer: backing clinical decisions with scientific and clinical evidence. Hum Reprod Update. 2014;20:808–21.

    Article  CAS  PubMed  Google Scholar 

  62. Ozgur K, Berkkanoglu M, Bulut H, Humaidan P, Coetzee K. Perinatal outcomes after fresh versus vitrified-warmed blastocyst transfer: retrospective analysis. Fertil Steril. 2015;104:899–907.

    Article  PubMed  Google Scholar 

  63. Shapiro BS, Daneshmand ST, Garner FC, Aguirre M, Hudson C. Clinical rationale for cryopreservation of entire embryo cohorts in lieu of fresh transfer. Fertil Steril. 2014;102:3–9.

    Article  PubMed  Google Scholar 

  64. Coates A, Kung A, Mounts E, Hesla J, Bankowski B, Barbieri E, et al. Optimal euploid embryo transfer strategy, fresh versus frozen, after preimplantation genetic screening with next generation sequencing: a randomized controlled trial. Fertil Steril. 2017;107:723–30.

    Article  PubMed  Google Scholar 

  65. Zhang XJ, Yang YZ, Lv Q, Wang Y, Cao XH, Li XJ, et al. The impact of two different thaw protocols on outcomes of vitrified cleavage-stage embryos transfer. Cryo-Letters. 2012;33:411–7.

    PubMed  Google Scholar 

  66. Keskintepe L, Sher G, Machnicka A, Tortoriello D, Bayrak A, Fisch J, et al. Vitrification of human embryos subjected to blastomere biopsy for pre-implantation genetic screening produces higher survival and pregnancy rates than slow freezing. J Assist Reprod Genet. 2009;26:629–35.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Magdi Y, El-Damen A, Fathi AM, Abdelez AM, Youssef MAE, et al. Revisiting the management of recurrent implantation failure through freeze-all policy. Fertil Steril. 2017;118:72–7.

    Article  Google Scholar 

  68. Shapiro BS, Daneshmand ST, Garner FC, Aguirre M, Hudson C. Freeze-all can be a superior therapy to another fresh cycle in patients with prior fresh blastocyst implantation failure. Reprod BioMed Online. 2014;29:286–90.

    Article  PubMed  Google Scholar 

  69. Galliano D, Bellver J, Dıaz-Garcıa C, Simon C, Pellicer A. ART and uterine pathology: how relevant is the maternal side for implantation? Hum Reprod Update. 2015;21:13–38.

    Article  CAS  PubMed  Google Scholar 

  70. Vercellini P, Consonni D, Dridi D, Bracco B, Frattaruolo MP, Somigliana E. Uterine adenomyosis and in vitro fertilization outcome: a systematic review and meta-analysis. Hum Reprod. 2014;29:964–77.

    Article  PubMed  Google Scholar 

  71. Park CW, Choi MH, Yang KM, Song IO. Pregnancy rate in women with adenomyosis undergoing fresh or frozen embryo transfer cycles following gonadotropin-releasing hormone agonist treatment. Clin Exp Reprod Med. 2016;43:169–73.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Bosch E, De Vos M, Humaidan P. The future of cryopreservation in assisted reproductive technologies. Front Endocrinol. 2020;11:67.

    Article  Google Scholar 

  73. Xu B, Li Z, Zhang H, Jin L, Li Y, Ai J, et al. Serum progesterone level effects on the outcome of in vitro fertilization in patients with different ovarian response: an analysis of more than 10,000 cycles. Fertil Steril. 2012;97:1321–7.

    Article  CAS  PubMed  Google Scholar 

  74. Yding Andersen C, Bungum L, Nyboe Andersen A, Humaidan P. Preovulatory progesterone concentration associates significantly to follicle number and LH concentration but not to pregnancy rate. Reprod BioMed Online. 2011;23:187–95.

    Article  PubMed  CAS  Google Scholar 

  75. Requena A, Cruz M, Bosch E, Meseguer M, Garcia-Velasco JA. High progesterone levels in women with high ovarian response do not affect clinical outcomes: a retrospective cohort study. Reprod Biol Endocrinol. 2014;12:69.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Venetis CA, Kolibianakis EM, Bosdou JK, Tarlatzis BC. Progesterone elevation and probability of pregnancy after IVF: a systematic review and meta-analysis of over 60 000 cycles. Hum Reprod Update. 2013;19:433–57.

    Article  CAS  PubMed  Google Scholar 

  77. Vuong LN, Dang VQ, Ho TM, Huynh BG, Ha DT, Pham TD, et al. IVF transfer of fresh or frozen embryos in women without polycystic ovaries. N Engl J Med. 2018;378:137–47.

    Article  PubMed  Google Scholar 

  78. Melo MA, Meseguer M, Garrido N, Bosch E, Pellicer A, Remohi J. The significance of premature luteinization in an oocyte-donation programme. Hum Reprod. 2006;21:1503–7.

    Article  CAS  PubMed  Google Scholar 

  79. Blockeel C, Racca A, De Munck N, Santos-Ribeiro S, Errazuriz Valenzuela J, Drakopoulos P, et al. Impact of serum progesterone on embryo quality and cumulative live birth rate in oocyte donation cycles. Hum Reprod. 2018;33(Suppl1):i464.

    Google Scholar 

  80. Franasiak JM, Ruiz-Alonso M, Scott RT, Simon C. Both slowly developing embryos and a variable pace of luteal endometrial progression may conspire to prevent normal birth in spite of a capable embryo. Fertil Steril. 2016;105:861–6.

    Article  PubMed  Google Scholar 

  81. Robertson DM, Gilchrist RB, Ledger WL, Baerwald A. Random start or emergency IVF/in vitro maturation: a new rapid approach to fertility preservation. Womens Health (Lond). 2016;12:339–49.

    Article  CAS  Google Scholar 

  82. Vaiarelli A, Cimadomo D, Argento C, Ubaldi N, Trabucco E, Drakopoulos P, et al. Double stimulation in the same ovarian cycle (DuoStim) is an intriguing strategy to improve oocyte yield and the number of competent embryos in a short timeframe. Minerva Ginecol. 2019;71:372–6.

    Article  PubMed  Google Scholar 

  83. Alsbjerg B, Haahr T, Elbaek HO, Laursen R, Povlsen BB, Humaidan P. Dual stimulation using corifollitropin alfa in 54 Bologna criteria poorovarian responders-a case series. Reprod BioMed Online. 2019;38:677–82.

    Article  CAS  PubMed  Google Scholar 

  84. Kuang Y, Chen Q, Fu Y, Wang Y, Hong Q, Lyu Q, et al. Medroxyprogesterone acetate is an effective oral alternative for preventing premature luteinizing hormone surges in women undergoing controlled ovarian hyperstimulation for in vitro fertilization. Fertil Steril. 2015;104:62–70 e3.

    Article  CAS  PubMed  Google Scholar 

  85. Zhu X, Zhang X, Fu Y. Utrogestan as an effective oral alternative for preventing premature luteinizing hormone surges in women undergoing controlled ovarian hyperstimulation for in vitro fertilization. Medicine. 2015;94:e909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Cakmak H, Katz A, Cedars MI, Rosen MP. Effective method for emergency fertility preservation: random-start controlled ovarian stimulation. Fertil Steril. 2013;100:1673–80.

    Article  PubMed  Google Scholar 

  87. Wennberg AL. Social freezing of oocytes: a means to take control of your fertility. Ups J Med Sci. 2020;125:95–8.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Bosdou JK, Venetis CA, Tarlatzis BC, Grimbizis GF, Kolibianakis EM. Higher probability of live-birth in high, but not normal, responders after first frozen-embryo transfer in a freeze-only cycle strategy compared to fresh embryo transfer: a meta-analysis. Hum Reprod. 2019;34:491–505.

    Article  CAS  PubMed  Google Scholar 

  89. Celada P, Bosch E, de los Santos MJ, Giles MJ, Pellicer JA. Elective frozen embryo transfer does not improve reproductive outcome in normo-responder patients. Hum Reprod. 2015;30:i112–3.

    Google Scholar 

  90. Wei D, Liu JY, Sun Y, Shi Y, Zhang B, Liu JO, et al. Frozen versus fresh single blastocyst transfer in ovulating women: a multicenter, randomized controlled trial. Lancet. 2019;393:1310–8.

    Article  PubMed  Google Scholar 

  91. Shi Y, Sun Y, Hao C, Zhang H, Wei D, Zhang Y, et al. Transfer of fresh versus frozen embryos in ovulatory women. N Engl J Med. 2018;378:126–36.

    Article  PubMed  Google Scholar 

  92. Orvieto R, Feldman N, Lantsberg D, Manela D, Zilberberg E, Haas J. Natural cycle frozen-thawed embryo transfer-can we improve cycle outcome? J Assist Reprod Genet. 2016;33:611–5.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Melnick AP, Setton R, Stone LD, Pereira N, Xu K, Rosenwaks Z, et al. Replacing single frozen-thawed euploid embryos in a natural cycle in ovulatory women may increase live birth rates compared to medicated cycles in anovulatory women. Assist Reprod Genet. 2017;34:1325–31.

    Article  Google Scholar 

  94. Pinborg A, Henningsen AA, Loft A, Malchau SS, Forman J, Andersen AN. Large baby syndrome in singletons born after frozen embryo transfer (FET): is it due to maternal factors or the cryotechnique? Hum Reprod. 2014;29:618–27.

    Article  CAS  PubMed  Google Scholar 

  95. Sazonova A, Kallen K, Thurin-Kjellberg A, Wennerholm UB, Bergh C. Obstetric outcome in singletons after in vitro fertilization with cryopreserved/thawed embryos. Hum Reprod. 2012;27:1343–50.

    Article  PubMed  Google Scholar 

  96. Pelkonen S, Gissler M, Koivurova S, Lehtinen S, Martikainen H, Hartikainen AL, et al. Physical health of singleton children born after frozen embryo transfer using slow freezing: a 3-year followup study. Hum Reprod. 2015;30:2411–8.

    Article  CAS  PubMed  Google Scholar 

  97. Maheshwari A, Raja EA, Bhattacharya S. Obstetric and perinatal outcomes after either fresh or thawed frozen embryo transfer: an analysis of 112,432 singleton pregnancies recorded in the Human Fertilisation and Embryology Authority anonymized dataset. Fertil Steril. 2016;106:1703–8.

    Article  PubMed  Google Scholar 

  98. Ishihara O, Araki R, Kuwahara A, Itakura A, Saito H, Adamson GD. Impact of frozen-thawed single-blastocyst transfer on maternal and neonatal outcome: an analysis of 277,042 single-embryo transfer cycles from 2008 to 2010 in Japan. Fertil Steril. 2014;101:128–33.

    Article  PubMed  Google Scholar 

  99. Shih W, Rushford DD, Bourne H, Garrett C, McBain JC, Healy DL, et al. Factors affecting low birthweight after assisted reproduction technology: difference between transfer of fresh and cryopreserved embryos suggests an adverse effect of oocyte collection. Hum Reprod. 2008;23:1644–53.

    Article  CAS  PubMed  Google Scholar 

  100. Maheshwari A, Pandey S, Amalraj Raja E, Shetty A, Hamilton M, Bhattacharya S. Is frozen embryo transfer better for mothers and babies? Can cumulative meta-analysis provide a definitive answer? Hum Reprod Update. 2018;24:35–58.

    Article  PubMed  Google Scholar 

  101. Bukowski R, Hansen NI, Willinger M, Reddy UM, Parker CB, Pinar H, et al. Human Development Stillbirth Collaborative Research Network. Fetal growth and risk of stillbirth: a population-based case-control study. PLoSMed. 2014;11:e1001633.

    Google Scholar 

  102. Luke B, Brown MB, Wantman E, Stern JE, Toner JP, Coddington CC. Increased risk of large-forgestational age birthweight in singleton siblings conceived with in vitro fertilization in frozen versus fresh cycles. J Assist Reprod Genet. 2017;34:191–200.

    Article  PubMed  Google Scholar 

  103. Ainsworth AJ, Wyatt MA, Shenoy CC, Hathcock M, Coddington CC. Fresh versus frozen embryo transfer has no effect on childhood weight. Fertil Steril. 2019;112:684–90.

    Article  PubMed  Google Scholar 

  104. Hiura H, Hattori H, Kobayashi N, Okae H, Chiba H, Miyauchi N, et al. Genome-wide microRNA expression profiling in placentae from frozen-thawed blastocyst transfer. Clin Epigenetics. 2017;9:79.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Chatzimeletiou K, Morrison EE, Panagiotidis Y, Vanderzwalmen P, Prapas N, Prapas Y, et al. Cytoskeletal analysis of human blastocysts by confocal laser scanning microscopy following vitrification. Hum Reprod. 2011;27:106–13.

    Article  PubMed  Google Scholar 

  106. Opdahl S, Henningsen AA, Tiitinen A, Bergh C, Pinborg A, Romundstad PR, et al. Risk of hypertensive disorders in pregnancies following assisted reproductive technology: a cohort study from the CoNARTaS group. Hum Reprod. 2015;30:1724–31.

    Article  CAS  PubMed  Google Scholar 

  107. Roque M, Bedoschi G, Cecchino GN, Esteves SC. Fresh versus frozen blastocyst transfer. Lancet. 2019;394:1227–8.

    Article  PubMed  Google Scholar 

  108. von Versen-Hoynck F, Schaub AM, Chi YY, Chiu KH, Liu J, Lingis M, et al. Increased preeclampsia risk and reduced aortic compliance with in vitro fertilization cycles in the absence of a corpus luteum. Hypertension. 2019;73:640–9.

    Article  CAS  Google Scholar 

  109. Sacha CR, Harris AL, James K, Basnet K, Freret TS, Yeh J, et al. Placental pathology in live births conceived with in vitro fertilization after fresh and frozen embryo transfer. Am J Obstet Gynecol. 2020;222:360.e1–360.e16.

    Article  CAS  Google Scholar 

  110. von Versen-Höynck F, Strauch NK, Liu J, Chi YY, Keller-Woods M, Conrad KP, et al. Effect of mode of conception on maternal serum relaxin, creatinine, and sodium concentrations in an infertile population. Reprod Sci. 2019;26:412–9.

    Article  CAS  Google Scholar 

  111. Sites CK, Wilson D, Barsky M, Bernson D, Bernstein IM, Boulet S, et al. Embryo cryopreservation and preeclampsia risk. Fertil Steril. 2017;108:784–90.

    Article  PubMed  Google Scholar 

  112. Zhu L, Zhang Y, Liu Y, Zhang R, Wu Y, Huang Y, et al. Maternal and live-birth outcomes of pregnancies following assisted reproductive technology: a retrospective cohort study. Sci Rep. 2016;6:35141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Gardner DK. The impact of physiological oxygen during culture, and vitrification for cryopreservation, on the outcome of extended culture in human IVF. Reprod Biomed. 2016;32:137–41.

    Article  Google Scholar 

  114. Sciorio R, Smith GD. Embryo culture at a reduced oxygen concentration of 5%: a mini review. Zygote. 2019;23:1–7.

    Google Scholar 

  115. Jing S, Li XF, Zhang S, Gong F, Lu G, Lin G. Increased pregnancy complications following frozen-thawed embryo transfer during an artificial cycle. J Assist Reprod Genet. 2019;36:925–33.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Saito K, Kuwahara A, Ishikawa T, Morisaki N, Miyado M, Miyado K, et al. Endometrial preparation methods for frozen-thawed embryo transfer are associated with altered risks of hypertensive disorders of pregnancy, placenta accreta, and gestational diabetes mellitus. Hum Reprod. 2019;34:1567–75.

    Article  PubMed  Google Scholar 

  117. Orvieto R, Kirshenbaum M, Gleicher N. Is embryo cryopreservation causing macrosomia-and what else? Front Endocrinol (Lausanne). 2020;11:19.

    Article  Google Scholar 

  118. Olausson N, Discacciati A, Nyman AI, Lundberg F, Hovatta O, Westerlund E, et al. Incidence of pulmonary and venous thromboembolism in pregnancies after in vitro fertilization with fresh respectively frozen-thawed embryo transfer: Nationwide cohort study. J Thromb Haemost. 2020;00:1–9.

    Google Scholar 

  119. Spangmose AL, Malchau SS, Henningsen AA, Forman JL, Rasmussen S, Loft A, et al. Academic performance in adolescents aged 15–16 years born after frozen embryo transfer compared with fresh embryo transfer: a nationwide registry-based cohort study. BJOG. 2019;126:261–9.

    Article  CAS  PubMed  Google Scholar 

  120. Roque M, Valle M, Guimaraes F, Sampaio M, Geber S. Cost-effectiveness of the freeze-all policy. JBRA Assist Reprod. 2015;19:125–30.

    Article  PubMed  Google Scholar 

  121. Papaleo E, Pagliardini L, Vanni VS, Delprato D, Rubino P, Candiani M, et al. A direct healthcare cost analysis of the cryopreserved versus fresh transfer policy at the blastocyst stage. Reprod BioMed Online. 2017;34:19–26.

    Article  PubMed  Google Scholar 

  122. Le KD, Vuong LN, Ho TM, Dang VQ, Pham TD, Pham CT, et al. A cost-effectiveness analysis of freeze-only or fresh embryo transfer in IVF of non-PCOS women. Hum Reprod. 2018;33:1907–14.

    Article  CAS  PubMed  Google Scholar 

  123. Song J, Xiang S, Sun Z. Frozen embryo transfer at the cleavage stage can be performed within the first menstrual cycle following the freeze-all strategy without adversely affecting the live birth rate: a STROBE-compliant retrospective study. Medicine. 2019;98:e17329.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Bourdon M, Santulli P, Maignien C, Pocate-Cheriet K, Alwohaibi A, Marcellin L, et al. The interval between oocyte retrieval and frozen-thawed blastocyst transfer does not affect the live birth rate and obstetrical outcomes. PLoS One. 2018;13:e0206067.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Higgins C, Healey M, Jatkar S, Vollenhoven B. Interval between IVF stimulation cycle and frozen embryo transfer: is there a benefit to a delay between cycles? Aust N Z J Obstet Gynaecol. 2018;58:217–21.

    Article  PubMed  Google Scholar 

  126. Smith ADAC, Tilling K, Lawlor DA, Nelson SM. Live birth rates and perinatal outcomes when all embryos are frozen compared with conventional fresh and frozen embryo transfer: a cohort study of 337,148 in vitro fertilisation cycles. BMC Med. 2019;17:202.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Code availability

This is a review article, code availability is not required.

Author information

Authors and Affiliations

Authors

Contributions

Michail Kalinderis: manuscript writing, literature search, and data analysis. Kallirhoe Kalinderi: literature search and data analysis. Garima Srivastava participated in the final evaluation of the submitted manuscript. Roy Homburg had the idea for the article, revised the manuscript critically, and approved the version to be published.

Corresponding author

Correspondence to Michail Kalinderis.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Ethics approval

This is a review article; therefore, no ethical approval is required.

Consent to participate

This is a review article; human subjects are not involved, and consent to participate is not required.

Consent to publish

This is a review article; human subjects are not involved, and consent to publish is not required.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalinderis, M., Kalinderi, K., Srivastava, G. et al. When Should We Freeze Embryos? Current Data for Fresh and Frozen Embryo Replacement IVF Cycles. Reprod. Sci. 28, 3061–3072 (2021). https://doi.org/10.1007/s43032-021-00628-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-021-00628-w

Keywords

Navigation