Skip to main content

Are We Closer to “Freeze-All” for ART?

  • Chapter
  • First Online:
Emerging Topics in Reproduction

Abstract

Embryo cryopreservation is critical to the success of any in vitro fertilization (IVF) program. With a conventional approach to IVF, the top-quality embryo(s) is transferred in a fresh cycle, and the remaining supernumerary embryos are cryopreserved. A freeze-all is performed only in cases of preimplantation genetic testing (PGT) for single-gene conditions or aneuploidy screening, fertility preservation, or concern for ovarian hyperstimulation syndrome (OHSS). Over the last 10 years, though, a different strategy has emerged, in which the IVF cycle is intentionally segmented into two phases: (1) controlled ovarian stimulation (COS) with planned cryopreservation of all suitable embryos and (2) frozen embryo transfer (FET) after at least one intervening menses. With increasingly compelling data, it has become apparent that not only are implantation rates higher with a planned freeze-all strategy, but also pregnancy and neonatal outcomes may likewise be improved. Indeed, the incidence of adverse events such as OHSS, miscarriage, ectopic pregnancy, and low birth weight may all be reduced following FET (Acharya et al. Fertil Steril 104 (4):873–878, 2015; Chen et al. N Engl J Med 375(6):523–533; Kalra et al. Obstet Gynecol 118(4):863–871). This chapter reviews the effect of COS on endometrial development, indications for, and evidence supporting a planned freeze-all strategy including premature progesterone elevation (PPE) and delayed embryo development, the optimal developmental stage and method for cryopreservation, and programmatic changes to consider when transitioning to a freeze-all program.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

COS:

Controlled ovarian stimulation

FET:

Frozen embryo transfer

PPE:

Premature progesterone elevation

WOR:

Window of receptivity

References

  1. Acharya KS, Acharya CR, Provost MP, Yeh JS, Steward RG, Eaton JL, Muasher SJ. Ectopic pregnancy rate increases with the number of retrieved oocytes in autologous in vitro fertilization with non-tubal infertility but not donor/recipient cycles: an analysis of 109,140 clinical pregnancies from the Society for Assisted Reproductive Technology registry. Fertil Steril. 2015;104(4):873–8. https://doi.org/10.1016/j.fertnstert.2015.06.025.

    Article  PubMed  Google Scholar 

  2. Chen ZJ, Shi Y, Sun Y, Zhang B, Liang X, Cao Y, Yang J, Liu J, Wei D, Weng N, Tian L, Hao C, Yang D, Zhou F, Shi J, Xu Y, Li J, Yan J, Qin Y, Zhao H, Zhang H, Legro RS. Fresh versus frozen embryos for infertility in the polycystic ovary syndrome. N Engl J Med. 2016;375(6):523–33. https://doi.org/10.1056/NEJMoa1513873.

    Article  PubMed  Google Scholar 

  3. Kalra SK, Ratcliffe SJ, Coutifaris C, Molinaro T, Barnhart KT. Ovarian stimulation and low birth weight in newborns conceived through in vitro fertilization. Obstet Gynecol. 2011;118(4):863–71. https://doi.org/10.1097/AOG.0b013e31822be65f.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Haouzi D, Assou S, Mahmoud K, Tondeur S, Reme T, Hedon B, De Vos J, Hamamah S. Gene expression profile of human endometrial receptivity: comparison between natural and stimulated cycles for the same patients. Hum Reprod. 2009;24(6):1436–45. https://doi.org/10.1093/humrep/dep039.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Haouzi D, Assou S, Dechanet C, Anahory T, Dechaud H, De Vos J, Hamamah S. Controlled ovarian hyperstimulation for in vitro fertilization alters endometrial receptivity in humans: protocol effects. Biol Reprod. 2010;82(4):679–86. https://doi.org/10.1095/biolreprod.109.081299.

    Article  PubMed  CAS  Google Scholar 

  6. Kaser D, Racowsky C. Should we eliminate fresh embryo transfer from ART. In: Schlegel P, Fauser B, Carrell D, Racowsky C, editors. Biennial review of infertility, vol. 3. New York: Springer; 2013. p. 201–14.

    Google Scholar 

  7. Young S, Lessey B, Balthazar U, Zaino R, Jin J, Sherwin J, Fritz M. Defining the relationship between progesterone dose, endometrial histology and gene expression using an in vivo luteal phase defect model. Reprod Sci. 2011;18(4 (Suppl)):273A.

    Google Scholar 

  8. Diaz-Gimeno P, Horcajadas JA, Martinez-Conejero JA, Esteban FJ, Alama P, Pellicer A, Simon C. A genomic diagnostic tool for human endometrial receptivity based on the transcriptomic signature. Fertil Steril. 2011;95(1):50–60.e51–15. https://doi.org/10.1016/j.fertnstert.2010.04.063.

    Article  PubMed  CAS  Google Scholar 

  9. Bermejo A, Cerrillo M, Ruiz-Alonso M, Blesa D, Simon C, Pellicer A, Garcia-Velasco JA. Impact of final oocyte maturation using gonadotropin-releasing hormone agonist triggering and different luteal support protocols on endometrial gene expression. Fertil Steril. 2014;101(1):138–146.e133. https://doi.org/10.1016/j.fertnstert.2013.09.033.

    Article  PubMed  CAS  Google Scholar 

  10. Lessey B. The use of biomarkers for the assessment of uterine receptivity. In: Gardner D, Weissman A, Howles C, Shoham Z, editors. Textbook of assisted reproductive techniques: laboratory and clinical perspectives. London: Martin Dunitz; 2001.

    Google Scholar 

  11. Norwitz ER, Schust DJ, Fisher SJ. Implantation and the survival of early pregnancy. N Engl J Med. 2001;345(19):1400–8. https://doi.org/10.1056/NEJMra000763.

    Article  PubMed  CAS  Google Scholar 

  12. Xiong Y, Wang J, Liu L, Chen X, Xu H, Li TC, Wang CC, Zhang S. Effects of high progesterone level on the day of human chorionic gonadotrophin administration in in vitro fertilization cycles on epigenetic modification of endometrium in the peri-implantation period. Fertil Steril. 2017;108(2):269–276.e261. https://doi.org/10.1016/j.fertnstert.2017.06.004.

    Article  PubMed  CAS  Google Scholar 

  13. Venetis CA, Kolibianakis EM, Bosdou JK, Tarlatzis BC. Progesterone elevation and probability of pregnancy after IVF: a systematic review and meta-analysis of over 60 000 cycles. Hum Reprod Update. 2013;19(5):433–57. https://doi.org/10.1093/humupd/dmt014.

    Article  PubMed  CAS  Google Scholar 

  14. Healy MW, Yamasaki M, Patounakis G, Richter KS, Devine K, DeCherney AH, Hill MJ. The slow growing embryo and premature progesterone elevation: compounding factors for embryo-endometrial asynchrony. Hum Reprod. 2017;32(2):362–7. https://doi.org/10.1093/humrep/dew296.

    Article  PubMed  Google Scholar 

  15. Wang A, Santistevan A, Hunter Cohn K, Copperman A, Nulsen J, Miller BT, Widra E, Westphal LM, Yurttas Beim P. Freeze-only versus fresh embryo transfer in a multicenter matched cohort study: contribution of progesterone and maternal age to success rates. Fertil Steril. 2017;108(2):254–261.e254. https://doi.org/10.1016/j.fertnstert.2017.05.007.

    Article  PubMed  CAS  Google Scholar 

  16. Werner MD, Forman EJ, Hong KH, Franasiak JM, Molinaro TA, Scott RT Jr. Defining the “sweet spot” for administered luteinizing hormone-to-follicle-stimulating hormone gonadotropin ratios during ovarian stimulation to protect against a clinically significant late follicular increase in progesterone: an analysis of 10,280 first in vitro fertilization cycles. Fertil Steril. 2014;102(5):1312–7. https://doi.org/10.1016/j.fertnstert.2014.07.766.

    Article  PubMed  CAS  Google Scholar 

  17. Franasiak JM, Thomas S, Ng S, Fano M, Ruiz A, Scott RT Jr, Forman EJ. Dehydroepiandrosterone (DHEA) supplementation results in supraphysiologic DHEA-S serum levels and progesterone assay interference that may impact clinical management in IVF. J Assist Reprod Genet. 2016;33(3):387–91. https://doi.org/10.1007/s10815-016-0650-3.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Gardner D, Schoolcraft W. In vitro culture of human blastocyst. In: Jansen R, Mortimer D, editors. Towards reproductive certainty: infertility and genetics beyond. Carnforth: Parthenon Press; 1999.

    Google Scholar 

  19. Shapiro BS, Harris DC, Richter KS. Predictive value of 72-hour blastomere cell number on blastocyst development and success of subsequent transfer based on the degree of blastocyst development. Fertil Steril. 2000;73(3):582–6.

    Article  CAS  PubMed  Google Scholar 

  20. Racowsky C, Combelles CM, Nureddin A, Pan Y, Finn A, Miles L, Gale S, O'Leary T, Jackson KV. Day 3 and day 5 morphological predictors of embryo viability. Reprod Biomed Online. 2003;6(3):323–31.

    Article  PubMed  Google Scholar 

  21. Guerif F, Le Gouge A, Giraudeau B, Poindron J, Bidault R, Gasnier O, Royere D. Limited value of morphological assessment at days 1 and 2 to predict blastocyst development potential: a prospective study based on 4042 embryos. Hum Reprod. 2007;22(7):1973–81. https://doi.org/10.1093/humrep/dem100.

    Article  PubMed  CAS  Google Scholar 

  22. Van den Abbeel E, Balaban B, Ziebe S, Lundin K, Cuesta MJ, Klein BM, Helmgaard L, Arce JC. Association between blastocyst morphology and outcome of single-blastocyst transfer. Reprod Biomed Online. 2013;27(4):353–61. https://doi.org/10.1016/j.rbmo.2013.07.006.

    Article  PubMed  Google Scholar 

  23. Hill MJ, Richter KS, Heitmann RJ, Graham JR, Tucker MJ, DeCherney AH, Browne PE, Levens ED. Trophectoderm grade predicts outcomes of single-blastocyst transfers. Fertil Steril. 2013;99(5):1283–1289.e1281. https://doi.org/10.1016/j.fertnstert.2012.12.003.

    Article  PubMed  Google Scholar 

  24. Wirleitner B, Schuff M, Stecher A, Murtinger M, Vanderzwalmen P. Pregnancy and birth outcomes following fresh or vitrified embryo transfer according to blastocyst morphology and expansion stage, and culturing strategy for delayed development. Hum Reprod. 2016;31(8):1685–95. https://doi.org/10.1093/humrep/dew127.

    Article  PubMed  CAS  Google Scholar 

  25. Shapiro BS, Richter KS, Harris DC, Daneshmand ST. A comparison of day 5 and day 6 blastocyst transfers. Fertil Steril. 2001;75(6):1126–30.

    Article  CAS  PubMed  Google Scholar 

  26. Campbell A, Fishel S, Bowman N, Duffy S, Sedler M, Thornton S. Retrospective analysis of outcomes after IVF using an aneuploidy risk model derived from time-lapse imaging without PGS. Reprod Biomed Online. 2013;27(2):140–6. https://doi.org/10.1016/j.rbmo.2013.04.013.

    Article  PubMed  Google Scholar 

  27. Goodman LR, Goldberg J, Falcone T, Austin C, Desai N. Does the addition of time-lapse morphokinetics in the selection of embryos for transfer improve pregnancy rates? A randomized controlled trial. Fertil Steril. 2016;105(2):275–285.e210. https://doi.org/10.1016/j.fertnstert.2015.10.013.

    Article  PubMed  Google Scholar 

  28. Richter KS, Shipley SK, McVearry I, Tucker MJ, Widra EA. Cryopreserved embryo transfers suggest that endometrial receptivity may contribute to reduced success rates of later developing embryos. Fertil Steril. 2006;86(4):862–6. https://doi.org/10.1016/j.fertnstert.2006.02.114.

    Article  PubMed  Google Scholar 

  29. Shapiro BS, Daneshmand ST, Garner FC, Aguirre M, Ross R. Contrasting patterns in in vitro fertilization pregnancy rates among fresh autologous, fresh oocyte donor, and cryopreserved cycles with the use of day 5 or day 6 blastocysts may reflect differences in embryo-endometrium synchrony. Fertil Steril. 2008;89(1):20–6. https://doi.org/10.1016/j.fertnstert.2006.08.092.

    Article  PubMed  Google Scholar 

  30. Shapiro BS, Daneshmand ST, Restrepo H, Garner FC, Aguirre M, Hudson C. Matched-cohort comparison of single-embryo transfers in fresh and frozen-thawed embryo transfer cycles. Fertil Steril. 2013;99(2):389–92. https://doi.org/10.1016/j.fertnstert.2012.09.044.

    Article  PubMed  Google Scholar 

  31. Centers for Disease Control and Prevention ASRM SfART. 2014 assisted reproductive technology national summary report. Atlanta, GA: US Dept of Health and Human Services; 2016.

    Google Scholar 

  32. Aflatoonian A, Oskouian H, Ahmadi S, Oskouian L. Can fresh embryo transfers be replaced by cryopreserved-thawed embryo transfers in assisted reproductive cycles? A randomized controlled trial. J Assist Reprod Genet. 2010;27(7):357–63. https://doi.org/10.1007/s10815-010-9412-9.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Shapiro BS, Daneshmand ST, Garner FC, Aguirre M, Hudson C, Thomas S. Evidence of impaired endometrial receptivity after ovarian stimulation for in vitro fertilization: a prospective randomized trial comparing fresh and frozen-thawed embryo transfer in normal responders. Fertil Steril. 2011;96(2):344–8. https://doi.org/10.1016/j.fertnstert.2011.05.050.

    Article  PubMed  Google Scholar 

  34. Shapiro BS, Daneshmand ST, Garner FC, Aguirre M, Hudson C, Thomas S. Evidence of impaired endometrial receptivity after ovarian stimulation for in vitro fertilization: a prospective randomized trial comparing fresh and frozen-thawed embryo transfers in high responders. Fertil Steril. 2011;96(2):516–8. https://doi.org/10.1016/j.fertnstert.2011.02.059.

    Article  PubMed  Google Scholar 

  35. Chen G, Zhang H, Ma Q, Zhao J, Zhang Y, Fan Q, Ma B. Fresh-frozen complete extensor mechanism allograft versus autograft reconstruction in rabbits. Sci Rep. 2016;6:22106. https://doi.org/10.1038/srep22106.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Shapiro BS, Daneshmand ST, De Leon L, Garner FC, Aguirre M, Hudson C. Frozen-thawed embryo transfer is associated with a significantly reduced incidence of ectopic pregnancy. Fertil Steril. 2012;98(6):1490–4. https://doi.org/10.1016/j.fertnstert.2012.07.1136.

    Article  PubMed  Google Scholar 

  37. Huang B, Hu D, Qian K, Ai J, Li Y, Jin L, Zhu G, Zhang H. Is frozen embryo transfer cycle associated with a significantly lower incidence of ectopic pregnancy? An analysis of more than 30,000 cycles. Fertil Steril. 2014;102(5):1345–9. https://doi.org/10.1016/j.fertnstert.2014.07.1245.

    Article  PubMed  Google Scholar 

  38. Huang TH, Chung SY, Chua S, Chai HT, Sheu JJ, Chen YL, Chen CH, Chang HW, Tong MS, Sung PH, Sun CK, Lu HI, Yip HK. Effect of early administration of lower dose versus high dose of fresh mitochondria on reducing monocrotaline-induced pulmonary artery hypertension in rat. Am J Transl Res. 2016;8(12):5151–68.

    PubMed  PubMed Central  CAS  Google Scholar 

  39. Pelkonen S, Koivunen R, Gissler M, Nuojua-Huttunen S, Suikkari AM, Hyden-Granskog C, Martikainen H, Tiitinen A, Hartikainen AL. Perinatal outcome of children born after frozen and fresh embryo transfer: the Finnish cohort study 1995-2006. Hum Reprod. 2010;25(4):914–23. https://doi.org/10.1093/humrep/dep477.

    Article  PubMed  CAS  Google Scholar 

  40. Pinborg A, Loft A, Aaris Henningsen AK, Rasmussen S, Andersen AN. Infant outcome of 957 singletons born after frozen embryo replacement: the Danish National Cohort Study 1995-2006. Fertil Steril. 2010;94(4):1320–7. https://doi.org/10.1016/j.fertnstert.2009.05.091.

    Article  PubMed  Google Scholar 

  41. Zhao J, Xu B, Zhang Q, Li YP. Which one has a better obstetric and perinatal outcome in singleton pregnancy, IVF/ICSI or FET?: a systematic review and meta-analysis. Reprod Biol Endocrinol. 2016;14(1):51. https://doi.org/10.1186/s12958-016-0188-3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. VerMilyea M, Liebermann J, Tucker M. Embryo cryopreservation. In: Ginsburg E, Racowsky C, editors. In vitro fertilization: a comprehensive guide. New York: Springer; 2012. p. 145–60.

    Chapter  Google Scholar 

  43. Shapiro BS, Daneshmand ST, Garner FC, Aguirre M, Hudson C. Freeze-all at the blastocyst or bipronuclear stage: a randomized clinical trial. Fertil Steril. 2015;104(5):1138–44. https://doi.org/10.1016/j.fertnstert.2015.07.1141.

    Article  PubMed  Google Scholar 

  44. Rienzi L, Gracia C, Maggiulli R, LaBarbera AR, Kaser DJ, Ubaldi FM, Vanderpoel S, Racowsky C. Oocyte, embryo and blastocyst cryopreservation in ART: systematic review and meta-analysis comparing slow-freezing versus vitrification to produce evidence for the development of global guidance. Hum Reprod Update. 2017;23(2):139–55. https://doi.org/10.1093/humupd/dmw038.

    Article  PubMed  Google Scholar 

  45. Casper RF, Yanushpolsky EH. Optimal endometrial preparation for frozen embryo transfer cycles: window of implantation and progesterone support. Fertil Steril. 2016;105(4):867–72. https://doi.org/10.1016/j.fertnstert.2016.01.006.

    Article  PubMed  CAS  Google Scholar 

  46. Yarali H, Polat M, Mumusoglu S, Yarali I, Bozdag G. Preparation of endometrium for frozen embryo replacement cycles: a systematic review and meta-analysis. J Assist Reprod Genet. 2016;33(10):1287–304. https://doi.org/10.1007/s10815-016-0787-0.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Santos-Ribeiro S, Polyzos NP, Lan VT, Siffain J, Mackens S, Van Landuyt L, Tournaye H, Blockeel C. The effect of an immediate frozen embryo transfer following a freeze-all protocol: a retrospective analysis from two centres. Hum Reprod. 2016;31(11):2541–8. https://doi.org/10.1093/humrep/dew194.

    Article  PubMed  Google Scholar 

  48. Blockeel C, Drakopoulos P, Santos-Ribeiro S, Polyzos NP, Tournaye H. A fresh look at the freeze-all protocol: a SWOT analysis. Hum Reprod. 2016;31(3):491–7. https://doi.org/10.1093/humrep/dev339.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kaser, D.J., Franasiak, J. (2018). Are We Closer to “Freeze-All” for ART?. In: Carrell, D., Racowsky, C., Schlegel, P., DeCherney, A. (eds) Emerging Topics in Reproduction. Springer, Cham. https://doi.org/10.1007/978-3-319-90823-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-90823-6_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-90822-9

  • Online ISBN: 978-3-319-90823-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics