Skip to main content
Log in

The Multifaceted Role of Autophagy in Endometrium Homeostasis and Disease

  • Review
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Autophagy is a conserved fundamental cellular process with a primary function of catabolizing harmful or surplus cellular contents such as protein aggregates, dysfunctional/long-lived organelles, intracellular pathogens, and storage nutrients. An increasing body of evidence reveals that basal autophagy is essential for maintaining endometrial homeostasis and mediating endometrial-specific functions, including menstrual cycle, embryo implantation, and decidualization. However, perturbed levels of autophagy can lead to severe endometrial pathologies, including endometriosis, endometrial hyperplasia, endometrial cancer, adenomyosis, and leiomyoma. This review highlights the most recent findings on the activity, regulation, and function of autophagy in endometrium physiology and pathology. Understanding the mechanistic roles of autophagy in endometrium homeostasis and disease is key to developing novel therapeutic strategies for endometrium-related infertility and malignancies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Not applicable

Code Availability

Not applicable.

Abbreviations

ATG:

Autophagy-related gene

BECN1:

Beclin 1

CMA:

Chaperone-mediated autophagy

LC3B-II:

Microtubule-associated proteins 1A/1B light chain 3B

mTORC:

Mechanistic target of rapamycin complex

ULK:

unc-51-like kinase

UVRAG:

UV resistance-associated gene

HESCs:

Human endometrial stromal cells

EC:

Endometrial cancer

References

  1. Parzych KR, Klionsky DJ. An overview of autophagy: morphology, mechanism, and regulation. Antioxid Redox Signal. 2014;20(3):460–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Dikic I, Elazar Z. Mechanism and medical implications of mammalian autophagy. Nat Rev Mol Cell Biol. 2018;19(6):349–64.

    Article  CAS  PubMed  Google Scholar 

  3. Levine B, Kroemer G. Biological functions of autophagy genes: a disease perspective. Cell. 2019;176(1-2):11–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Morishita H, Mizushima N. Diverse cellular roles of autophagy. Annu Rev Cell Dev Biol. 2019;35:453–75.

    Article  CAS  PubMed  Google Scholar 

  5. Levine B, Kroemer G. Autophagy in the pathogenesis of disease. Cell. 2008;132(1):27–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Choi J, Jo M, Lee E, Oh YK, Choi D. The role of autophagy in human endometrium. Biol Reprod. 2012;86(3):70.

    Article  PubMed  Google Scholar 

  7. Oestreich, A.K., et al., The autophagy gene Atg16L1 is necessary for endometrial decidualization. Endocrinology, 2020. 161(1).

  8. Oestreich AK, Chadchan SB, Medvedeva A, Lydon JP, Jungheim ES, Moley KH, et al. The autophagy protein, FIP200 (RB1CC1) mediates progesterone responses governing uterine receptivity and decidualizationdagger. Biol Reprod. 2020;102(4):843–51.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Choi J, Jo M, Lee E, Kim HJ, Choi D. Differential induction of autophagy by mTOR is associated with abnormal apoptosis in ovarian endometriotic cysts. Mol Hum Reprod. 2014;20(4):309–17.

    Article  CAS  PubMed  Google Scholar 

  10. Feng L, Li J, Yang L, Zhu L, Huang X, Zhang S, et al. Tamoxifen activates Nrf2-dependent SQSTM1 transcription to promote endometrial hyperplasia. Theranostics. 2017;7(7):1890–900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lebovitz CB, Robertson AG, Goya R, Jones SJ, Morin RD, Marra MA, et al. Cross-cancer profiling of molecular alterations within the human autophagy interaction network. Autophagy. 2015;11(9):1668–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Glick D, Barth S, Macleod KF. Autophagy: cellular and molecular mechanisms. J Pathol. 2010;221(1):3–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pyo JO, Nah J, Jung YK. Molecules and their functions in autophagy. Exp Mol Med. 2012;44(2):73–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tabibzadeh S. The signals and molecular pathways involved in human menstruation, a unique process of tissue destruction and remodelling. Mol Hum Reprod. 1996;2(2):77–92.

    Article  CAS  PubMed  Google Scholar 

  15. Kommagani R, Szwarc MM, Kovanci E, Gibbons WE, Putluri N, Maity S, et al. Acceleration of the glycolytic flux by steroid receptor coactivator-2 is essential for endometrial decidualization. PLoS Genet. 2013;9(10):e1003900.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kokawa K, Shikone T, Nakano R. Apoptosis in the human uterine endometrium during the menstrual cycle. J Clin Endocrinol Metab. 1996;81(11):4144–7.

    CAS  PubMed  Google Scholar 

  17. Tao XJ, Tilly KI, Maravei DV, Shifren JL, Krajewski S, Reed JC, et al. Differential expression of members of the bcl-2 gene family in proliferative and secretory human endometrium: glandular epithelial cell apoptosis is associated with increased expression of bax. J Clin Endocrinol Metab. 1997;82(8):2738–46.

    CAS  PubMed  Google Scholar 

  18. Vaskivuo TE, Stenbäck F, Karhumaa P, Risteli J, Dunkel L, Tapanainen JS. Apoptosis and apoptosis-related proteins in human endometrium. Mol Cell Endocrinol. 2000;165(1-2):75–83.

    Article  CAS  PubMed  Google Scholar 

  19. Zhou S, Zhao L, Yi T, Wei Y, Zhao X. Menopause-induced uterine epithelium atrophy results from arachidonic acid/prostaglandin E2 axis inhibition-mediated autophagic cell death. Sci Rep. 2016;6:31408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Large MJ, DeMayo FJ. The regulation of embryo implantation and endometrial decidualization by progesterone receptor signaling. Mol Cell Endocrinol. 2012;358(2):155–65.

    Article  CAS  PubMed  Google Scholar 

  21. Mestre Citrinovitz AC, Strowitzki T, Germeyer A. Decreased autophagy impairs decidualization of human endometrial stromal cells: a role for ATG proteins in endometrial physiology. Int J Mol Sci. 2019:20(12).

  22. Rhee JS, Saben JL, Mayer AL, Schulte MB, Asghar Z, Stephens C, et al. Diet-induced obesity impairs endometrial stromal cell decidualization: a potential role for impaired autophagy. Hum Reprod. 2016;31(6):1315–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen Q, Gao R, Geng Y, Chen X, Liu X, Zhang L, et al. Decreased autophagy was implicated in the decreased apoptosis during decidualization in early pregnant mice. J Mol Histol. 2018;49(6):589–97.

    Article  CAS  PubMed  Google Scholar 

  24. Chantalat E, et al. Estrogen receptors and endometriosis. Int J Mol Sci. 2020:21(8).

  25. Falcone T, Flyckt R. Clinical management of endometriosis. Obstet Gynecol. 2018;131(3):557–71.

    Article  PubMed  Google Scholar 

  26. Zondervan KT, Becker CM, Missmer SA. Endometriosis. N Engl J Med. 2020;382(13):1244–56.

    Article  CAS  PubMed  Google Scholar 

  27. Yagyu T, et al. Activation of mammalian target of rapamycin in postmenopausal ovarian endometriosis. Int J Gynecol Cancer. 2006;16(4):1545–51.

    Article  CAS  PubMed  Google Scholar 

  28. Allavena G, Carrarelli P, del Bello B, Luisi S, Petraglia F, Maellaro E. Autophagy is upregulated in ovarian endometriosis: a possible interplay with p53 and heme oxygenase-1. Fertil Steril. 2015;103(5):1244–51 e1.

    Article  CAS  PubMed  Google Scholar 

  29. Choi J, Jo MW, Lee EY, Lee DY, Choi DS. Dienogest enhances autophagy induction in endometriotic cells by impairing activation of AKT, ERK1/2, and mTOR. Fertil Steril. 2015;104(3):655–64 e1.

    Article  CAS  PubMed  Google Scholar 

  30. Mei J, Zhu XY, Jin LP, Duan ZL, Li DJ, Li MQ. Estrogen promotes the survival of human secretory phase endometrial stromal cells via CXCL12/CXCR4 up-regulation-mediated autophagy inhibition. Hum Reprod. 2015;30(7):1677–89.

    Article  CAS  PubMed  Google Scholar 

  31. Ruiz A, Rockfield S, Taran N, Haller E, Engelman RW, Flores I, et al. Effect of hydroxychloroquine and characterization of autophagy in a mouse model of endometriosis. Cell Death Dis. 2016;7:e2059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang L, Liu Y, Xu Y, Wu H, Wei Z, Cao Y. The expression of the autophagy gene beclin-1 mRNA and protein in ectopic and eutopic endometrium of patients with endometriosis. Int J Fertil Steril. 2015;8(4):429–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Borahay MA, et al. Mullerian inhibiting substance suppresses proliferation and induces apoptosis and autophagy in endometriosis cells in vitro. ISRN Obstet Gynecol. 2013;2013:361489.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Jamali N, et al. Ameliorative effects of quercetin and metformin and their combination against experimental endometriosis in rats. Reprod Sci. 2020.

  35. Yin B, Jiang H, Liu X, Guo SW. Enriched environment decelerates the development of endometriosis in mouse. Reprod Sci. 2020;27(7):1423–35.

    Article  CAS  PubMed  Google Scholar 

  36. Matsuzaki S, Pouly JL, Canis M. In vitro and in vivo effects of MK2206 and chloroquine combination therapy on endometriosis: autophagy may be required for regrowth of endometriosis. Br J Pharmacol. 2018;175(10):1637–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Armstrong AJ, Hurd WW, Elguero S, Barker NM, Zanotti KM. Diagnosis and management of endometrial hyperplasia. J Minim Invasive Gynecol. 2012;19(5):562–71.

    Article  PubMed  Google Scholar 

  38. Brinton LA, Berman ML, Mortel R, Twiggs LB, Barrett RJ, Wilbanks GD, et al. Reproductive, menstrual, and medical risk factors for endometrial cancer: results from a case-control study. Am J Obstet Gynecol. 1992;167(5):1317–25.

    Article  CAS  PubMed  Google Scholar 

  39. Wang QQ, Guo XC, Li L, Gao ZH, Ji M. Treatment with metformin and sorafenib alleviates endometrial hyperplasia in polycystic ovary syndrome by promoting apoptosis via synergically regulating autophagy. J Cell Physiol. 2020;235(2):1339–48.

    Article  CAS  PubMed  Google Scholar 

  40. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.

    Article  PubMed  Google Scholar 

  41. Morice P, Leary A, Creutzberg C, Abu-Rustum N, Darai E. Endometrial cancer. Lancet. 2016;387(10023):1094–108.

    Article  PubMed  Google Scholar 

  42. Nunez-Olvera SI, et al. Autophagy machinery as a promising therapeutic target in endometrial cancer. Front Oncol. 2019;9:1326.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Budina-Kolomets A, Hontz RD, Pimkina J, Murphy ME. A conserved domain in exon 2 coding for the human and murine ARF tumor suppressor protein is required for autophagy induction. Autophagy. 2013;9(10):1553–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhang J, Wang Z, Zhao R, An L, Zhou X, Zhao Y, et al. An integrated autophagy-related gene signature predicts prognosis in human endometrial Cancer. BMC Cancer. 2020;20(1):1030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sivridis E, Giatromanolaki A, Liberis V, Koukourakis MI. Autophagy in endometrial carcinomas and prognostic relevance of 'stone-like' structures (SLS): what is destined for the atypical endometrial hyperplasia? Autophagy. 2011;7(1):74–82.

    Article  CAS  PubMed  Google Scholar 

  46. Giatromanolaki A, Koukourakis MI, Koutsopoulos A, Chloropoulou P, Liberis V, Sivridis E. High Beclin 1 expression defines a poor prognosis in endometrial adenocarcinomas. Gynecol Oncol. 2011;123(1):147–51.

    Article  CAS  PubMed  Google Scholar 

  47. Zhao JH, Wan XY, Xie X, Zhou CY, Wu QY. Expression and clinical significance of Beclin1 and PTEN in endometrial carcinoma. Ai Zheng. 2006;25(6):753–7.

    CAS  PubMed  Google Scholar 

  48. Tsubamoto H, et al. Itraconazole inhibits AKT/mTOR signaling and proliferation in endometrial cancer cells. Anticancer Res. 2017;37(2):515–9.

    Article  CAS  PubMed  Google Scholar 

  49. Wu CH, Chen HY, Wang CW, Shieh TM, Huang TC, Lin LC, et al. Isoliquiritigenin induces apoptosis and autophagy and inhibits endometrial cancer growth in mice. Oncotarget. 2016;7(45):73432–47.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Fukuda T, Oda K, Wada-Hiraike O, Sone K, Inaba K, Ikeda Y, et al. Autophagy inhibition augments resveratrol-induced apoptosis in Ishikawa endometrial cancer cells. Oncol Lett. 2016;12(4):2560–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhang J, Riby JE, Conde L, Grizzle WE, Cui X, Skibola CF. A Fucus vesiculosus extract inhibits estrogen receptor activation and induces cell death in female cancer cell lines. BMC Complement Altern Med. 2016;16:151.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Cho YJ, Woo JH, Lee JS, Jang DS, Lee KT, Choi JH. Eclalbasaponin II induces autophagic and apoptotic cell death in human ovarian cancer cells. J Pharmacol Sci. 2016;132(1):6–14.

    Article  CAS  PubMed  Google Scholar 

  53. Fukuda T, Oda K, Wada-Hiraike O, Sone K, Inaba K, Ikeda Y, et al. The anti-malarial chloroquine suppresses proliferation and overcomes cisplatin resistance of endometrial cancer cells via autophagy inhibition. Gynecol Oncol. 2015;137(3):538–45.

    Article  CAS  PubMed  Google Scholar 

  54. Liu S, Li X. Autophagy inhibition enhances sensitivity of endometrial carcinoma cells to paclitaxel. Int J Oncol. 2015;46(6):2399–408.

    Article  CAS  PubMed  Google Scholar 

  55. Liu H, Zhang L, Zhang X, Cui Z. PI3K/AKT/mTOR pathway promotes progestin resistance in endometrial cancer cells by inhibition of autophagy. Onco Targets Ther. 2017;10:2865–71.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Xie Y, Wang YL, Yu L, Hu Q, Ji L, Zhang Y, et al. Metformin promotes progesterone receptor expression via inhibition of mammalian target of rapamycin (mTOR) in endometrial cancer cells. J Steroid Biochem Mol Biol. 2011;126(3-5):113–20.

    Article  CAS  PubMed  Google Scholar 

  57. Zhuo Z, Wang A, Yu H. Metformin targeting autophagy overcomes progesterone resistance in endometrial carcinoma. Arch Gynecol Obstet. 2016;294(5):1055–61.

    Article  CAS  PubMed  Google Scholar 

  58. Takahashi A, Kimura F, Yamanaka A, Takebayashi A, Kita N, Takahashi K, et al. Metformin impairs growth of endometrial cancer cells via cell cycle arrest and concomitant autophagy and apoptosis. Cancer Cell Int. 2014;14:53.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Tamai K, Togashi K, Ito T, Morisawa N, Fujiwara T, Koyama T. MR imaging findings of adenomyosis: correlation with histopathologic features and diagnostic pitfalls. Radiographics. 2005;25(1):21–40.

    Article  PubMed  Google Scholar 

  60. Benagiano G, Habiba M, Brosens I. The pathophysiology of uterine adenomyosis: an update. Fertil Steril. 2012;98(3):572–9.

    Article  CAS  PubMed  Google Scholar 

  61. Ferenczy A. Pathophysiology of adenomyosis. Hum Reprod Update. 1998;4(4):312–22.

    Article  CAS  PubMed  Google Scholar 

  62. Levgur M, Abadi MA, Tucker A. Adenomyosis: symptoms, histology, and pregnancy terminations. Obstet Gynecol. 2000;95(5):688–91.

    CAS  PubMed  Google Scholar 

  63. Yoo JY, Ku BJ, Kim TH, Il Ahn J, Ahn JY, Yang WS, et al. beta-catenin activates TGF-beta-induced epithelial-mesenchymal transition in adenomyosis. Exp Mol Med. 2020;52(10):1754–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Vercellini P, Viganò P, Somigliana E, Daguati R, Abbiati A, Fedele L. Adenomyosis: epidemiological factors. Best Pract Res Clin Obstet Gynaecol. 2006;20(4):465–77.

    Article  PubMed  Google Scholar 

  65. Benagiano G, Brosens I. The endometrium in adenomyosis. Womens Health (Lond). 2012;8(3):301–12.

    Article  CAS  Google Scholar 

  66. Bergeron C, Amant F, Ferenczy A. Pathology and physiopathology of adenomyosis. Best Pract Res Clin Obstet Gynaecol. 2006;20(4):511–21.

    Article  PubMed  Google Scholar 

  67. Mehasseb MK, et al. Estrogen and progesterone receptor isoform distribution through the menstrual cycle in uteri with and without adenomyosis. Fertil Steril. 2011;95(7):2228–35 2235 e1.

    Article  CAS  PubMed  Google Scholar 

  68. Herndon CN, Aghajanova L, Balayan S, Erikson D, Barragan F, Goldfien G, et al. Global transcriptome abnormalities of the eutopic endometrium from women with adenomyosis. Reprod Sci. 2016;23(10):1289–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sparic R. Uterine myomas in pregnancy, childbirth and puerperium. Srp Arh Celok Lek. 2014;142(1-2):118–24.

    Article  PubMed  Google Scholar 

  70. Sabry M, Al-Hendy A. Medical treatment of uterine leiomyoma. Reprod Sci. 2012;19(4):339–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Del Bello B, et al. Autophagy up-regulation by ulipristal acetate as a novel target mechanism in the treatment of uterine leiomyoma: an in vitro study. Fertil Steril. 2019;112(6):1150–9.

    Article  PubMed  Google Scholar 

  72. Andaloussi AE, Habib S, Soylemes G, Laknaur A, Elhusseini H, al-Hendy A, et al. Defective expression of ATG4D abrogates autophagy and promotes growth in human uterine fibroids. Cell Death Dis. 2017;3:17041.

    Article  Google Scholar 

  73. Whitaker LH, Murray AA, Matthews R, Shaw G, Williams AR, Saunders PT, et al. Selective progesterone receptor modulator (SPRM) ulipristal acetate (UPA) and its effects on the human endometrium. Hum Reprod. 2017;32(3):531–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Zheng LH, et al. Stromal fibroblast activation and their potential association with uterine fibroids (Review). Oncol Lett. 2014;8(2):479–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Luo N, Guan Q, Zheng L, Qu X, Dai H, Cheng Z. Estrogen-mediated activation of fibroblasts and its effects on the fibroid cell proliferation. Transl Res. 2014;163(3):232–41.

    Article  CAS  PubMed  Google Scholar 

  76. Zhou WJ, Zhang J, Yang HL, Wu K, Xie F, Wu JN, et al. Estrogen inhibits autophagy and promotes growth of endometrial cancer by promoting glutamine metabolism. Cell Commun Signal. 2019;17(1):99.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Kanda R, Hiraike H, Wada-Hiraike O, Ichinose T, Nagasaka K, Sasajima Y, et al. Expression of the glucagon-like peptide-1 receptor and its role in regulating autophagy in endometrial cancer. BMC Cancer. 2018;18(1):657.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Felip I, Moiola CP, Megino-Luque C, Lopez-Gil C, Cabrera S, Solé-Sánchez S, et al. Therapeutic potential of the new TRIB3-mediated cell autophagy anticancer drug ABTL0812 in endometrial cancer. Gynecol Oncol. 2019;153(2):425–35.

    Article  CAS  PubMed  Google Scholar 

  79. Zhou WJ, Chang KK, Wu K, Yang HL, Mei J, Xie F, et al. Rapamycin synergizes with cisplatin in antiendometrial cancer activation by improving IL-27-stimulated cytotoxicity of NK cells. Neoplasia. 2018;20(1):69–79.

    Article  CAS  PubMed  Google Scholar 

  80. De U, et al. A new synthetic histone deacetylase inhibitor, MHY2256, induces apoptosis and autophagy cell death in endometrial cancer cells via p53 acetylation. Int J Mol Sci. 2018:19(9).

  81. Lin Q, Wang Y, Chen D, Sheng X, Liu J, Xiong H. Cisplatin regulates cell autophagy in endometrial cancer cells via the PI3K/AKT/mTOR signalling pathway. Oncol Lett. 2017;13(5):3567–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Sun MY, Zhu JY, Zhang CY, Zhang M, Song YN, Rahman K, et al. Autophagy regulated by lncRNA HOTAIR contributes to the cisplatin-induced resistance in endometrial cancer cells. Biotechnol Lett. 2017;39(10):1477–84.

    Article  CAS  PubMed  Google Scholar 

  83. Gu CJ, Cheng J, Zhang B, Yang SL, Xie F, Sun JS, et al. Protopanaxadiol and metformin synergistically inhibit estrogen-mediated proliferation and anti-autophagy effects in endometrial cancer cells. Am J Transl Res. 2017;9(9):4071–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Eritja N, Chen BJ, Rodríguez-Barrueco R, Santacana M, Gatius S, Vidal A, et al. Autophagy orchestrates adaptive responses to targeted therapy in endometrial cancer. Autophagy. 2017;13(3):608–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Conza D, Mirra P, Calì G, Tortora T, Insabato L, Fiory F, et al. The SGK1 inhibitor SI113 induces autophagy, apoptosis, and endoplasmic reticulum stress in endometrial cancer cells. J Cell Physiol. 2017;232(12):3735–43.

    Article  CAS  PubMed  Google Scholar 

  86. Wang H, Li D, Li X, Ou X, Liu S, Zhang Y, et al. Mammalian target of rapamycin inhibitor RAD001 sensitizes endometrial cancer cells to paclitaxel-induced apoptosis via the induction of autophagy. Oncol Lett. 2016;12(6):5029–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ran X, Yang J, Liu C, Zhou P, Xiao L, Zhang K. MiR-218 inhibits HMGB1-mediated autophagy in endometrial carcinoma cells during chemotherapy. Int J Clin Exp Pathol. 2015;8(6):6617–26.

    PubMed  PubMed Central  Google Scholar 

  88. Kao C, Chao A, Tsai CL, Chuang WC, Huang WP, Chen GC, et al. Bortezomib enhances cancer cell death by blocking the autophagic flux through stimulating ERK phosphorylation. Cell Death Dis. 2014;5:e1510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Bao XX, Xie BS, Li Q, Li XP, Wei LH, Wang JL. Nifedipine induced autophagy through Beclin1 and mTOR pathway in endometrial carcinoma cells. Chin Med J. 2012;125(17):3120–6.

    CAS  PubMed  Google Scholar 

  90. Lu H, Li S, Wu Q. Retinoic acid regulates endometriotic stromal cell growth through upregulation of Beclin1. Arch Gynecol Obstet. 2018;297(1):93–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Jennifer Brazill, Mandy Chan, and Anne Robinson for assisting with schematic figure preparation in association with InPrint, Washington University, St. Louis, MO. We also thank Anthony Bartley, Scientific Graphic Designer for Fig. 1 preparation, Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO.

Funding

This work was funded, in part, by the National Institutes of Health/National Institute of Child Health and Human Development grants R00HD080742, RO1HD065435 and R01HD102680 to RK and Washington University School of Medicine start-up funds to RK.

Author information

Authors and Affiliations

Authors

Contributions

PP, AJS, and RK wrote the article. All authors reviewed and approved the final version of the article.

Corresponding author

Correspondence to Ramakrishna Kommagani.

Ethics declarations

Ethical Consents

Ethical consents are not applicable to this study since the study did not involve animal and human subjects.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popli, P., Sun, A.J. & Kommagani, R. The Multifaceted Role of Autophagy in Endometrium Homeostasis and Disease. Reprod. Sci. 29, 1054–1067 (2022). https://doi.org/10.1007/s43032-021-00587-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-021-00587-2

Keywords

Navigation