Skip to main content

Advertisement

Log in

Potential distribution models from two highly endemic species of subterranean rodents of Argentina: which environmental variables have better performance in highly specialized species?

  • Original Article
  • Published:
Mammalian Biology Aims and scope Submit manuscript

Abstract

South American rodents of the genus Ctenomys (tuco-tucos) occupy the underground environment, present high specificity to loose and friable soils and have restricted mobility, with a generally fragmented distribution. We use species distribution models (SDMs) in two Ctenomys species from the Atlantic coast and continental areas of Argentina. We develop SDMs using Maxent software for Ctenomys australis and Ctenomys talarum, which coexist in a narrow coastal landscape with restricted distributions. We model the potential distributions of both species using, first, bioclimatic variables (Group 1), and second, Landsat 8 bands and granulometric layers (Group 2). According to the known distributions of the species, the Group 2 variables showed the greatest accuracy for inferring their potential distributions. The most important variables for predicting habitat suitability were, primarily, the majority of granulometric variables and some Landsat 8 bands such as the bands 4 and 5, related to the vegetation cover. We also analyze the level of overlapping niches between these two species, and we found that there is a certain degree of geographical overlap between them, and also present ecologically similar niches, despite the fact that the characteristics of their habitats differ in certain aspects. We conclude that in tuco-tucos species, their potential distributions are better predicted by variables that consider the particular characteristics of soils and cover vegetation, since they are specialized species of substrates. Also, a higher spatial resolution allows a better performance of the Ctenomys species models, which was expected for species with restricted distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig.6
Fig. 7

Similar content being viewed by others

References

  • Ahmadi M, Naderi M, Kaboli M, Nazarizadeh M, Karami M, Beitollahi SM (2018) Evolutionary applications of phylogenetically-informed ecological niche modelling (ENM) to explore cryptic diversification over cryptic refugia. Mol Phylogenetics Evol. https://doi.org/10.1016/j.ympev.2018.06.019

    Article  Google Scholar 

  • Allouche O, Tsoar A, Kadmon R (2006) Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J Appl Ecol 43:1223–1232

    Article  Google Scholar 

  • Anderson RP, Raza A (2010) The effect of the extent of the study region on GIS models of species geographic distributions and estimates of niche evolution: preliminary tests with montane rodents (genus Nephelomys) in Venezuela. J Biogeogr 37:1378–1393

    Article  Google Scholar 

  • Apfelbaum LI, Massarini AI, Daleffe LE, Reig OA (1991) Genetic variability in the subterranean rodents Ctenomys australis and Ctenomys porteusi (Rodentia: Octodontidae). Biochem Syst Ecol 19:467–476

    Article  CAS  Google Scholar 

  • Austin MP, Van Niel KP (2011) Improving species distribution models for climate change studies: variable selection and scale. J Biogeogr 38:1–8

    Article  Google Scholar 

  • Austrich A, Mora MS, Mapelli FJ, Fameli A, Kittlein MJ (2020a) Influences of landscape characteristics and historical barriers on the population genetic structure in the endangered sand-dune subterranean rodent Ctenomys australis. Genetica 148:149–164

    Article  PubMed  Google Scholar 

  • Austrich A, Mora MS, Mapelli FJ, Kittlein MJ (2020b) Landscape change and associated increase in habitat fragmentation during the last 30 years in coastal sand dunes of Buenos Aires Province, Argentina. Estuaries Coast. https://doi.org/10.1007/s12237-020-00798-x

  • Boettinger JL, Howell DW, Moore AC, Hartemink AE, Kienast-Brown S (2010) Digital soil mapping: bridging research, environmental application, and operation. Springer-Verlag, Dordrecht

    Book  Google Scholar 

  • Broennimann O, Fitzpatrick MC, Pearman PB, Petitpierre B, Pellissier L, Yoccoz NG, Thuiller W, Fortin MJ, Randin C, Zimmermann NE, Graham CH, Guisan A (2012) Measuring ecological niche overlap from occurrence and spatial environmental data. Global Ecol Biogeogr 21:481–497

    Article  Google Scholar 

  • Broennimann O, Di Cola V, Petitpierre B, Breiner F et al (2018) Package ‘ecospat'

  • Busch C, Antinuchi CD, del Valle JC, Kittlein MJ, Malizia AI, Vassallo AI, Zenuto RR (2000) Population ecology of subterranean rodents. In: Lacey EA, Patton JL, Cameron GN (eds) Life underground. University of Chicago Press, Chicago, pp 183–226

    Google Scholar 

  • Cantor SB et al. (1999) A comparison of C/B ratios from studies using receiver operating characteristic curve analysis. J. Clin. Epidemiol. 52:885–892

  • Celsi CE, Monserrat AL (2008) Vascular plants, coastal dunes between Pehuen-Có and Monte Hermoso, Buenos Aires, Argentina. Check List 4:37–46

    Article  Google Scholar 

  • Comparatore VM, Agnusdei M, Busch C (1992) Habitat relations in Ctenomys australis and Ctenomys talarum (Rodentia, Octodontidae) in a natural grassland. Z Säugetierkd 57:47–55

    Google Scholar 

  • Connor T, Viña A, Winkler JA, Hull V, Tang Y, Shortridge A, Yang H, Zhao Z, Wang F, Zhang J, Zhang Z, Zhou C, Bai W, Liu W (2019) Interactive spatial scale effects on species distribution modeling: the case of the giant panda. Sci Rep 9:14563

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Contreras JR, Reig OA (1965) Datos sobre la distribución del género Ctenomys (Rodentia: Octodontidae) en la zona costera de la Provincia de Buenos Aires entre Necochea y Bahia Blanca. Physis 25:169–186

    Google Scholar 

  • Cutrera AP, Mora MS (2017) Selection on MHC in a context of historical demographic change in two closely distributed species of tuco-tucos (Ctenomys australis and C. talarum). J Hered 108:628–639

    Article  PubMed  Google Scholar 

  • Cutrera AP, Mora MS, Antenucci CD, Vassallo AI (2010) Intra- and interspecific variation in home-range size in sympatric tuco-tucos, Ctenomys australis and Ctenomys talarum. J Mammal 91:1425–1434

    Article  Google Scholar 

  • Elith J, Leathwick JR (2009) Species distribution models: ecological explanation and prediction across space and time. Annu Rev Ecol Evol Syst 40:677–697

    Article  Google Scholar 

  • Elith J, Graham CH, Anderson RP, Dudík M, Ferrier S et al (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151

    Article  Google Scholar 

  • Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE, Yates CJ (2011) A statistical explanation of MaxEnt for ecologists. Divers Distrib 17:43–57

    Article  Google Scholar 

  • Escobar LE, Lira-Noriega A, Medina-Vogel G, Peterson AT (2014) Potential for spread of the white-nose fungus (Pseudogymnoascus destructans) in the Americas: use of Maxent and NicheA to assure strict model transference. Geospat Health 9:221–229

    Article  PubMed  Google Scholar 

  • ESRI (2014) ArcGIS Desktop: Release 10. Environmental Systems Research Institute, Redlands, CA

    Google Scholar 

  • Freitas TRO (1995) Geographic distribution and conservation of four species of the genus Ctenomys in Southern Brazil. Stud Neotrop Fauna Environ 30:53–59

    Article  Google Scholar 

  • Freitas TRO (2016) Family Ctenomyidae (Tuco-tucos). In: Wilson DE, Lacer TE, Mittermeier RA (eds) Handbook of the mammals of the world lagomorphs and rodents I. Lynx Edicions Publications, Barcelona, pp 498–534

    Google Scholar 

  • Gómez Fernández MJ, Boston ESM, Gaggiotti OE, Kittlein MJ, Mirol PM (2016) Influence of environmental heterogeneity on the distribution and persistence of a subterranean rodent in a highly unstable landscape. Genetica. https://doi.org/10.1007/s10709-016-9937-7

    Article  PubMed  Google Scholar 

  • Grunwald S, Thompson JA, Boettinger JL (2011) Digital soil mapping and modeling at continental scales: finding solutions for global issues. Soil Sci Soc Am J 75(4):1201–1213

    Article  Google Scholar 

  • Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8:993–1009

    Article  Google Scholar 

  • Guisan A, Tingley R, Baumgartner JB, Naujokaitis-Lewis I, Sutcliffe PR, Tulloch AI, Martin TG (2013) Predicting species distributions for conservation decisions. Ecol Lett 16:1424–1435

    Article  PubMed  PubMed Central  Google Scholar 

  • Gutiérrez EE (2016) Ecological niche modelling requires real presence data and appropriate study regions: a comment on Medone et al. (2015). Phil Trans R Soc B 371:20160027. https://doi.org/10.1098/rstb.2016.0027

    Article  PubMed  PubMed Central  Google Scholar 

  • Gutiérrez EE, Boria RA, Anderson RP (2014) Can biotic interactions cause allopatry? Niche models, competition, and distributions of South American mouse opossums. Ecography 37:741–753

    Article  Google Scholar 

  • Gutiérrez EE, Maldonado JE, Radosavljevic A, Molinari J, Patterson BD, Martínez CJM, Rutter AR, Hawkins MTR, Garcia FJ, Helgen KM (2015) The taxonomic status of Mazama bricenii and the significance of the Táchira depression for mammalian endemism in the Cordillera de Mérida, Venezuela. PLoS ONE 10:1–24

    Article  Google Scholar 

  • Hartemink AE, McBratney AB, Mendonça-Santos ML (2008) Digital soil mapping with limited data. Springer-Verlag, Dordrecht

    Book  Google Scholar 

  • He KS, Bradley BA, Cord AF, Rocchini D, Tuanmu M, Schmidtlein S, Turner W, Wegmann M, Pettorelli N (2015) Will remote sensing shape the next generation of species distribution models? Remote Sens Ecol Conserv. https://doi.org/10.1002/rse2.7

    Article  Google Scholar 

  • Hoffman JD (2015) Habitat characteristics within a zone of separation between the ranges of two species of pocket Gophers. Am Midl Nat 173:253–266

    Article  Google Scholar 

  • Hoffman JD, Choate JR (2008) Distribution and status of the yellow-faced pocket gopher in Kansas. West N Am Nat 67:483–492

    Article  Google Scholar 

  • Imdad UM, Aslam M, Saima A (2016) mctest: An R Package for Detection of Collinearity among Regressors.The R Journal, 8:499–509. https://doi.org/10.32614/RJ-2016-062.

  • Isla FI (2013) From touristic villages to coastal cities: the costs of the big step in Buenos Aires. Ocean Coast Manage 77:59–65

    Article  Google Scholar 

  • Justo ER, De Santis LJM, Kin MS (2003) Ctenomys talarum. Mamm Species 730:1–5

    Article  Google Scholar 

  • Ke Y, Im J, Lee J, Gong H, Ryu Y (2015) Characteristics of Landsat 8 OLI-derived NDVI by comparison with multiple satellite sensors and in-situ observations. Remote Sens Environ 164:298–313

    Article  Google Scholar 

  • Kittlein MJ, Vassallo AI, Mora MS, de Durana F, Ricciardulli MG, Tizón FR (2004) Dunas del Sureste Bonaerense. In: Bilenca D, Miñarro F (eds) Identificación de Áreas Valiosas de Pastizal en las Pampas y Campos de Argentina, Uruguay y Sur de Brasil. Fundación Vida Silvestre Argentina, Buenos Aires, pp 76–77

    Google Scholar 

  • Kubiak BB, Galiano D, De Freitas TRO (2015) Sharing the space: distribution, habitat segregation and delimitation of a new sympatric area of subterranean rodents. PLoS ONE. https://doi.org/10.1371/journal.pone.0123220

    Article  PubMed  PubMed Central  Google Scholar 

  • Kubiak BB, Gutiérrez EE, Galiano D, Maestri R, Freitas TRO (2017) Can niche modeling and geometric morphometrics document competitive exclusion in a pair of subterranean rodents (genus Ctenomys) with tiny parapatric distributions? Sci Rep 7:16283

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lacey EA (2000) Spatial and social systems of subterranean rodents. In: Lacey EA, Cameron G, Patton JL (eds) Life underground: the biology of subterranean rodents. University of Chicago Press, Chicago, pp 257–296

    Google Scholar 

  • Lahoz-Monfort JJ, Guillera-Arroita G, Milner-Gulland EJ, Young RP, Nicholson E (2010) Satellite imagery as a single source of predictor variables for habitat suitability modelling: how Landsat can inform the conservation of a critically endangered lemur. J Appl Ecol 47:1094–1102

    Article  Google Scholar 

  • Lal R (1991) Soil structure and sustainability. J Sustain Agric 1:67–92

    Article  Google Scholar 

  • Lazo-Cancino D, Rivera R, Paulsen-Cortez K, González-Berríos N, Rodríguez-Gutiérrez R, Rodríguez-Serrano E (2019) The impacts of climate change on the habitat distribution of the vulnerable Patagonian-Fueguian species Ctenomys magellanicus (Rodentia, Ctenomyidae). J Arid Environ 173:104016

    Article  Google Scholar 

  • Liu C, Berry PM, Dawson TP, Pearson RG (2005) Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28:385–393

    Article  Google Scholar 

  • Lobo JM, Jiménez-Valverde A, Real R (2008) AUC: A misleading measure of the performance of predictive distribution models. Glob Ecol Biogeogr 17(2):145–151

    Article  Google Scholar 

  • Luna F, Antinuchi CD (2006) Cost of foraging in the subterranean rodent Ctenomys talarum: effect of soil hardness. Can J Zool 84:661–667

    Article  Google Scholar 

  • Luna F, Antinuchi CD (2007) Energy and distribution in subterranean rodents: sympatry between two species of the genus Ctenomys. Comp Biochem Phys A 147:948–954

    Article  CAS  Google Scholar 

  • Malizia AI, Vassallo AI, Busch C (1991) Population and habitat characteristics of two sympatric species of Ctenomys (Rodentia: Octodontidae). Acta Theriol 36:87–94

    Article  Google Scholar 

  • Mapelli FJ, Kittlein MJ (2009) Influence of patch and landscape characteristics on the distribution of the subterranean rodent Ctenomys porteousi. Landscape Ecol 24:723–733

    Article  Google Scholar 

  • Martínez-Freiría F, Sillero N, Lizana M, Brito JC (2008) GIS-based niche models identify environmental correlates sustaining a contact zone between three species of European vipers. Divers Distrib 14:452–461

    Article  Google Scholar 

  • Martinez-Gordillo D, Rojas-Soto O, Espinosa de los Monteros A (2010) Ecological niche modelling as an exploratory tool for identifying species limits: an example based on Mexican muroid rodents. J Evol Biol 23:259–270

    Article  CAS  PubMed  Google Scholar 

  • Merow C, Smith M, Silander JA (2013) A practical guide to Maxent: what it does, and why inputs and settings matter. Ecography 36:1–12

    Article  Google Scholar 

  • Mora MS, Lessa EP, Kittlein MJ, Vassallo AI (2006) Phylogeography of the subterranean rodent Ctenomys australis in sand-dune habitats: evidence of population expansion. J Mammal 87:1192–1203

    Article  Google Scholar 

  • Mora MS, Lessa EP, Cutrera AP, Kittlein MJ, Vassallo AI (2007) Phylogeographical structure in the subterranean tuco-tuco Ctenomys talarum (Rodentia: Ctenomyidae): contrasting the demographic consequences of regional and habitat-specific histories. Mol Ecol 16:3453–3465

    Article  CAS  PubMed  Google Scholar 

  • Mora MS, Mapelli FJ, Gaggiotti OE, Kittlein MJ, Lessa EP (2010) Dispersal and population structure at different spatial scales in the subterranean rodent Ctenomys australis. BMC Genet 11:9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mora MS, Cutrera AP, Lessa EP, Vassallo AI, D’Anatro A, Mapelli FJ (2013) Phylogeography and population genetic structure of the Talas tuco-tuco (Ctenomys talarum): integrating demographic and habitat histories. J Mamm 94:459–476

    Article  Google Scholar 

  • Moraitis ML, Tsikopoulou I, Geropoulos A, Dimitriou PD, Papageorgiou N, Giannoulaki M, Valavanis VD, Karakassis I (2018) Molluscan indicator species and their potential use in ecological status assessment using species distribution modeling. Mar Environ Res 140:10–17

    Article  CAS  PubMed  Google Scholar 

  • Morán-Ordóñez A, Suárez-Seoane S, Elith J, Calvo L, de Luis E (2012) Satellite surface reflectance improves habitat distribution mapping: a case study on heath and shrub formations in the Cantabrian Mountains (NW Spain). Divers Distrib 18:588–602

    Article  Google Scholar 

  • Morueta-Holme N, Fløjgaard C, Svenning JC (2010) Climate change risks and conservation implications for a threatened small-range mammal species. PLoS ONE 5:e10360. https://doi.org/10.1371/journal.pone.0010360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muscarella R, Galante PJ, Soley-Guardia M, Boria RA, Kass JM, Uriarte M, Anderson RP (2014) ENMeval: an R package for conducting spatially independent evaluations and estimating optimal model complexity for MAXENT ecological niche models. Methods Ecol Evol 5:1198–1205

    Article  Google Scholar 

  • Nevo E (1999) Mosaic evolution of subterranean mammals: regression, progression, and global convergence. Oxford University Press, New York

    Google Scholar 

  • Ojeda RA, Ojeda AA, Novillo A (2016) The caviomorph rodents: distribution and ecological diversification. In: Ebensperger LA, Hayes LD (eds) Sociobiology of caviomorph rodents: an integrative approach. John Wiley & Sons Ltd, New Jersey, pp 1–27

    Google Scholar 

  • Oyarzabal M, Clavijo J, Oakley L, Biganzoli F, Tognetti P, Barberis I, Maturo HM, Aragón R, Campanello PI, Prado D, Oesterheld M, León RJC (2018) Unidades de vegetación de la Argentina. Ecol Austral 28:040–063

    Article  Google Scholar 

  • Patton JL, Pardiñas UFJ, Delía G (2015) Mammals of South America, vol 2: rodents. University of Chicago Press, Chicago

  • Peterson AT, Papes M, Soberón J (2008) Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecol Model 213:63–72

    Article  Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259

    Article  Google Scholar 

  • Quintana AC (2004) El Registro de Ctenomys talarum durante el Pleistoceno Tardío-Holoceno de las Sierras de Tandilia Oriental. J Neotrop Mammal 11:45–53

    Google Scholar 

  • Radosavljevic A, Anderson RP (2014) Making better Maxent models of species distributions: complexity, overfitting and evaluation. J Biogeogr 41:629–643

    Article  Google Scholar 

  • Rakotondranary SJ, Ganzhorn JU (2011) Habitat separation of sympatric Microcebus spp. in the dry spiny forest of south-eastern Madagascar. Folia Primatol 82:212–223

    Google Scholar 

  • Reig OA, Busch C, Contreras J, Ortells M (1990) An overview of evolution, systematics, population biology and molecular biology in Ctenomys. In: Nevo E, Reig OA (eds) Biology of subterranean mammals. Allan Liss, New York, pp 71–96

    Google Scholar 

  • Shabani F, Kumar L, Ahmadi M (2016) A comparison of absolute performance of different correlative and mechanistic species distribution models in an independent area. Ecol Evol 6(16):5973–5986

    Article  PubMed  PubMed Central  Google Scholar 

  • Shams I, Avivi A, Nevo E (2005) Oxygen and carbon dioxide fluctuations in burrows of subterranean blind mole rats indicate tolerance to hypoxic-hypercapnic stresses. Comp Biochem Physiol A Mol Integr Physiol 142:376–382

    Article  PubMed  CAS  Google Scholar 

  • Shirley SM, Yang Z, Hutchinson RA, Alexander JD, McGarigal K, Betts MG (2013) Species distribution modelling for the people: unclassified landsat TM imagery predicts bird occurrence at fine resolutions. Diversity Distrib 19:855–866

    Article  Google Scholar 

  • Smeraldo S, Di Febbraro M, Ćirović D, Bosso L, Trbojević I, Russo D (2017) Species distribution models as a tool to predict range expansion after reintroduction: a case study on Eurasian beavers (Castor fiber). J Nat Conserv 37:12–20

    Article  Google Scholar 

  • Soley-Guardia M, Gutiérrez EE, Thomas DM, Ochoa-G J, Aguilera M, Anderson RP (2016) Are we overestimating the niche? Removing marginal localities helps ecological niche models detect environmental barriers. Ecol Evol 6:1267–1279

    Article  PubMed  PubMed Central  Google Scholar 

  • Sony RK, Sena S, Kumarb S, Send M, Jayaharid KM (2018) Niche models inform the effects of climate change on the endangered Nilgiri Tahr (Nilgiritragus hylocrius) populations in the southern Western Ghats, India. Ecol Eng 120:355–363

    Article  Google Scholar 

  • Spanner MA, Pierce LL, Peterson DL, Running SW (1990) Remote sensing of temperate coniferous forest leaf area index. The influence of canopy closure, understory vegetation and background reflectance. Int J Remote Sens 11:95–111

    Article  Google Scholar 

  • Suárez-Seoane S, Virgós E, Terroba O, Pardavila X, Barea-Azcón JM (2014) Scaling of species distribution models across spatial resolutions and extents along a biogeographic gradient. The case of the Iberian mole Talpa occidentalis. Ecography 37:279–292

    Article  Google Scholar 

  • Syfert MM, Smith MJ, Coomes DA (2013) The effects of sampling bias and model complexity on the predictive performance of MaxEnt species distribution models. PLoS ONE 8:1–10

    Article  Google Scholar 

  • Thuiller W, Araújo MB, Lavorel S (2004) Do we need land-cover data to model species distributions in Europe? J Biogeog 31:353–361

    Article  Google Scholar 

  • Torres R, Jayat P (2010) Modelos predictivos de distribución para cuatro especies de mamíferos (Cingulata, Artiodactyla y Rodentia) típicas del Chaco en Argentina. Mastozool Neotropical 17:335–352

    Google Scholar 

  • Vassallo AI (1993) Habitat shift after experimental removal of the bigger species in sympatric Ctenomys talarum and Ctenomys australis (Rodentia: Octodontidae). Behaviour 127:247–263

    Article  Google Scholar 

  • Vassallo AI (1998) Functional morphology, comparative behaviour, and adaptation in two sympatric subterranean rodents genus Ctenomys (Caviomorpha: Octodontidae). J Zool 244:415–427

    Article  Google Scholar 

  • Zárate MA, Tripaldi A (2012) The aeolian system of central Argentina. Aeol Res 3:401–417

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to all of our colleagues at the “Grupo Ecología Fisiológica y del Comportamiento” and “Grupo de Ecología y Genética de Poblaciones de Mamíferos” of the Departamento de Biología and IMMyC-CONICET, Universidad Nacional de Mar del Plata for their support at various stages of this research. This study was supported by grants of the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET, PIP 5844), FONCYT (PICT 201-0427), and from Universidad Nacional de Mar del Plata (Project EXA903/18).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ailin Austrich.

Additional information

Handling Editor: Carlos Fonseca.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Fig. S1

Binary maps obtained for C. australis from continuous bioclimatic models, applying the Threshold Criteria 1 (TC1) and the Threshold Criteria 2 (TC2). The dark gray area shows the suitable habitat (PDF 611 KB)

Fig. S2

Binary maps obtained for C. talarum from continuous bioclimatic models, applying the Threshold Criteria 1 (TC1) and the Threshold Criteria 2 (TC2). The dark gray area shows the suitable habitat (PDF 501 KB)

Fig. S3

First output of jackknife test showing the relative importance of different environmental variables (Landsat bands and granulometric layers) in Maxent models of C. talarum. The “With variable” bars indicate the gain of the models if each variable is considered independently; “Without variable” bars indicate the gain of the models as one variable is excluded at a time, creating a model with the remaining variables (PDF 7 KB)

Fig. S4

Potential areas of sympatry for C. australis and C. talarum. The dark gray area shows the potential area of overlap between both species; the records of occurrence of C. australis (white circles) and C. talarum (black circles) are also shown (PDF 143 KB)

Supplementary file5 (XLSX 22 KB)

Supplementary file6 (DOCX 34 KB)

Supplementary file7 (DOCX 42 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Austrich, A., Kittlein, M.J., Mora, M.S. et al. Potential distribution models from two highly endemic species of subterranean rodents of Argentina: which environmental variables have better performance in highly specialized species?. Mamm Biol 101, 503–519 (2021). https://doi.org/10.1007/s42991-021-00150-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42991-021-00150-1

Keywords

Navigation