Skip to main content
Log in

Alpine periglacial zones in Anatolia: spatial distribution and main characteristics

  • Original Paper
  • Published:
Mediterranean Geoscience Reviews Aims and scope Submit manuscript

Abstract

Although alpine periglacial studies in Anatolia date back to the 1950s, the distribution of periglacial areas and their general characteristics are poorly known. At present, geographic information systems and remote sensing technologies facilitate the identification of permafrost and periglacial features. In this study, alpine periglacial zones of Anatolia were identified and classified using data on mean annual temperature, Köppen-Geiger climate type, number of snow-covered months, land cover, and terrain classification data, employing Multi-Criteria Decision Making. The periglacial regions in Anatolia are classified into three zones, namely weak, moderate, and severe, based on the coefficient value. Our results indicate that periglacial areas cover 92,362 km2, corresponding to 11% area of Türkiye. Most periglacial regions are in the weak periglacial zone, while only 2% are in the moderate and severe periglacial zones. Periglacial areas are commonly observed between 1750 and 3500 m, and their severity increases with elevation. The mean elevations of weak, moderate, and severe periglacial zones are 2200 m, 2600 m, and 3000 m, respectively. The severe periglacial zones correspond to the summits of high mountains where Quaternary glaciations occurred. The average temperatures of the periglacial zones decrease with the severity of the zones. The annual average temperature of 5.6 °C in the weak periglacial zones decreases to 2.4 °C in the moderate periglacial zones and 0.6 °C in the severe periglacial zones. Total annual precipitation and the number of months with snow cover increase from weak to severe periglacial zones. Weak periglacial zones are snow-covered for an average of 3.3 months per year, while moderate and severe periglacial zones are snow-covered for an average of 5 months and 6.4 months per year, respectively. This study suggests that global datasets can be used to effectively identify alpine periglacial zones in Anatolia, taking into account the characteristics of known periglacial areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Altınay O, Sarıkaya MA, Çiner A (2020) Late-glacial to Holocene glaciers in the Turkish mountains. Mediterr Geosci Rev 2:119–133. https://doi.org/10.1007/s42990-020-00024-7

    Article  Google Scholar 

  • Arpat E, Özgül N (1972) Orta Toroslar’Da, Geyik Dağı yöresinde kaya buzulları. Bull Min Res Explor 78:30–35

    Google Scholar 

  • Atalay İ (1984) Glacial morphology of the Mescit Mountain (NE Anatolia). Ege Coğrafya Derg 2:129–138

    Google Scholar 

  • Azzoni RS, Bollati IM, Pelfini M et al (2022) Geomorphology of a recently deglaciated high mountain area in Eastern Anatolia (Turkey). J Maps 18:258–267. https://doi.org/10.1080/17445647.2022.2035269

    Article  Google Scholar 

  • Ballantyne CK (2018) Periglacial Geomorphology. Wiley-Blackwell

  • Bayer Altın T (2006) Aladağlar ve Bolkar Dağları üzerinde görülen periglasiyal jeomorfolojik şekiller. Türk Coğrafya Derg 46:105–122

    Google Scholar 

  • Bayrakdar C, Özdemir H (2014) Kaçkar Dağı’nda bakı faktörünün glasiyal ve periglasiyal topografya gelişimi üzerindeki etkisi. Türk Coğrafya Derg 54:1–13. https://doi.org/10.17211/TCD.95116

    Article  Google Scholar 

  • Bayrakdar C, Çılğın Z, Keserci F (2020) Traces of late quaternary glaciations and paleoclimatic interpretation of Mount Akdağ (Alanya, 2451 m), Southwest Turkey. Mediterr Geosci Rev 2:135–151. https://doi.org/10.1007/s42990-020-00026-5

    Article  Google Scholar 

  • Beck HE, Zimmermann NE, McVicar TR et al (2018) Present and future köppen-geiger climate classification maps at 1-km resolution. Sci Data 5:1–12. https://doi.org/10.1038/sdata.2018.214

    Article  Google Scholar 

  • Bilgin T (1960) Kaz Dağı ve üzerindeki periglasyal şekiller hakkında. Türk Coğrafya Derg 20:114–123

    Google Scholar 

  • Bilgin T (1969) Gavur Dağı kütlesinde glasyal ve periglasiyal topografya şekilleri. İstanbul Üniversitesi Yayınları

  • Bilgin T (1972) Munzur Dağları Doğu kısmının glasiyal ve periglasiyal morfolojisi. İstanbul Üniversitesi Yayınları

  • Boeckli L, Brenning A, Gruber S, Noetzli J (2012) Permafrost distribution in the European alps: calculation and evaluation of an index map and summary statistics. Cryosph 6:807–820. https://doi.org/10.5194/tc-6-807-2012

    Article  Google Scholar 

  • Bosson J-B, Lambiel C (2016) Internal structure and current evolution of very small debris-covered glacier systems located in alpine permafrost environments. Front Earth Sci 4. https://doi.org/10.3389/feart.2016.00039

  • Brown J, Ferrians O, Heginbottom JA, Melnikov E (2002) Circum-Arctic Map of Permafrost and Ground-Ice Conditions, Version 2

  • Büdel J (1982) Climatic geomorphology. Princeton University Press

  • Çakır Ç, Kopar İ (2017) Palandöken Dağları’nda tufurlar ve doğal ortam özelliklerinin tufurların oluşumu üzerindeki etkileri. In: Uluslararası Jeomorfoloji Sempozyumu 2017. pp 103–110

  • Çalışkan O, Gürgen G, Yılmaz E, Yeşilyurt S (2011) Debris-covered glaciers in Aladaglar mountains (Turkey). Chikei/Transactions Japanese Geomorphol Union 32:121–128

    Google Scholar 

  • Çalışkan O, Gürgen G, Yılmaz E, Yeşilyurt S (2012) Bolkar Dağları kuzeydoğusunun glasyal morfolojisi ve döküntüyle örtülü buzulları. Uluslararası İnsan Bilim Derg 9:890–911

    Google Scholar 

  • Çalışkan O, Çalışkan A, Abacı A et al (2013) Türkiye buzküresinin jeoistatistik modellemelerle belirlenmesi. In: Coğrafyacılar Derneği Yıllık Kongresi Bildiriler Kitab. pp 554–562

  • Candaş A, Sarikaya MA, Köse O et al (2020) Modelling last glacial Maximum ice cap with the parallel ice sheet model to infer palaeoclimate in south-west Turkey. J Quat Sci 35:935–950. https://doi.org/10.1002/jqs.3239

    Article  Google Scholar 

  • Çetinkaya G, Şimşek M, Öztürk MZ (2023) Doğu Toroslardaki çözünme dolinlerinin morfometrik özellikleri. Jeomorfol Araştırmalar Derg 20–33. https://doi.org/10.46453/jader.1201290

  • Christiansen HH, Humlum O, Eckerstorfer M (2013) Central Svalbard 2000–2011 Meteorological dynamics and Periglacial Landscape Response. Arct Antarct Alp Res 45:6–18. https://doi.org/10.1657/1938-4246-45.16

    Article  Google Scholar 

  • Çiner A (2003) Türkiye’nin Güncel Buzulları ve Geç Kuvaterner Buzul Çökelleri. Türkiye Jeol Bülteni 46:55–78

    Google Scholar 

  • Çiner A, Sarıkaya MA (2022) The Anatolian Peninsula. Periglacial landscapes of Europe. Springer International Publishing, Cham, pp 115–134

    Chapter  Google Scholar 

  • Çiner A, Sarıkaya MA, Yıldırım C (2017) Misleading old age on a young landform? The dilemma of cosmogenic inheritance in surface exposure dating: Moraines vs. rock glaciers. Quat Geochronol 42:76–88. https://doi.org/10.1016/j.quageo.2017.07.003

    Article  Google Scholar 

  • Çiner A, Sarıkaya MA, Zreda M et al (2024) Complete last glacial cycle cosmogenic 36Cl glacial chronology of Mt. Aladağlar, Central Taurus Range, Southern Türkiye. Quat Sci Rev In

  • de Planhol X, Bilgin T (1961) Karagöl kütlesi üzerinde Pleistosen ve aktüel glasiasyon ile periglasyal topoğrafya şekilleri. İstanbul Üniversitesi Coğrafya Enstitüsü Derg 12:127–146

    Google Scholar 

  • Dede V, Çiçek İ, Uncu L (2015) Karçal Dağları’nda kaya buzulu oluşumları. Yerbilimleri 36:61–80. https://doi.org/10.17824/yrb.90910

    Article  Google Scholar 

  • Dede V, Çiçek İ, Sarıkaya MA et al (2017) First cosmogenic geochronology from the lesser Caucasus: late pleistocene glaciation and rock glacier development in the Karçal Valley, NE Turkey. Quat Sci Rev 164:54–67. https://doi.org/10.1016/j.quascirev.2017.03.025

    Article  Google Scholar 

  • Dede V, Dengiz O, Demirağ Turan İ et al (2020) Ilgaz Dağları periglasyal şekillerinde oluşmuş toprakların fizikokimyasal özellikleri ile bazı erozyon duyarlılık parametreleri arasındaki ilişkilerin belirlenmesi. Coğrafi Bilim Derg 18:99–123. https://doi.org/10.33688/aucbd.689755

    Article  Google Scholar 

  • Dede V, Dengiz O, Zorlu BŞ, Zorlu K (2021) Ilgaz Dağları’nda yükseltiye bağlı sıcaklık değişiminin periglasyal şekillerdeki toprak özellikleri üzerine etkisi. Türk Coğrafya Derg 23–32. https://doi.org/10.17211/tcd.1002568

  • Dede V, Turan İD, Dengiz O et al (2022) Effects of periglacial landforms on soil erosion sensitivity factors and predicted by artificial intelligence approach in Mount Cin, NE Turkey. Eurasian Soil Sci 55:1857–1870. https://doi.org/10.1134/S106422932260138X

    Article  CAS  Google Scholar 

  • Dobinski W (2011) Permafrost. Earth Sci Rev 108:158–169. https://doi.org/10.1016/j.earscirev.2011.06.007

    Article  Google Scholar 

  • Erinç S (1949) Uludağ üzerinde glasyal morfoloji araştırmaları. Türk Coğrafya Derg 11–12:79–94

    Google Scholar 

  • Erinç S (1955) Glasiyal ve Periglasiyal Morfoloji bakımından Honaz ve Bozdağ. Türk Coğrafya Derg 13–14:25–43

    Google Scholar 

  • Erinç S (1957) Uludağ Periglasiyali hakkında. İstanbul Üniversitesi Coğrafya Enstitüsü Derg 4:91–94

    Google Scholar 

  • Erinç S, Bilgin T, Bener M (1961) Ilgaz üzerinde periglasyal şekiller. İstanbul Üniversitesi Coğrafya Enstitüsü Derg 12:151–160

    Google Scholar 

  • Evans IS, Çılğın Z, Bayrakdar C, Canpolat E (2021) The form, distribution and palaeoclimatic implications of cirques in southwest Turkey (Western Taurus). Geomorphology 391:107885. https://doi.org/10.1016/J.GEOMORPH.2021.107885

    Article  Google Scholar 

  • Fick SE, Hijmans RJ (2017) WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int J Climatol 37:4302–4315. https://doi.org/10.1002/joc.5086

    Article  Google Scholar 

  • Fontugne M, Kuzucuoǧlu C, Karabiyikoǧlu M et al (1999) From Pleniglacial to Holocene: a 14 C chronostratigraphy of environmental changes in the Konya Plain, Turkey. Quat Sci Rev 18:573–591. https://doi.org/10.1016/S0277-3791(98)90098-1

    Article  Google Scholar 

  • Francou B, Méhauté N, Le, Jomelli V (2001) Factors controlling spacing distances of sorted stripes in a low-latitude, alpine environment (Cordillera Real, 16 °S, Bolivia). Permafr Periglac Process 12:367–377. https://doi.org/10.1002/ppp.398

    Article  Google Scholar 

  • French HM (2007) The Periglacial Environment. Wiley

  • French H, Thorn CE (2006) The changing nature of periglacial geomorphology. Géomorphologie Reli Process Environ 12. https://doi.org/10.4000/geomorphologie.119

  • Gruber S (2012) Derivation and analysis of a high-resolution estimate of global permafrost zonation. Cryosph 6:221–233. https://doi.org/10.5194/tc-6-221-2012

    Article  Google Scholar 

  • Gürgen G, Çalışkan O, Yılmaz E, Yeşilyurt S (2010) Yedigöller Platosu ve Emli Vadisinde (Aladağlar) döküntü örtülü buzullar. E-J New World Sci Acad NEWSSA 5:98–116

    Google Scholar 

  • Harris SA (1988) The Alpine Periglacial Zone. In: Clark MJ (ed) Advances in Periglacial Geomorphology. J. Wiley and Sons, Chichester, pp 369–413

    Google Scholar 

  • Hashemi K, Sarıkaya MA, Görüm T et al (2022) The Namaras rock avalanche: evidence of mid-to-late Holocene paraglacial activity in the Central Taurus Mountains, SW Turkey. Geomorphology 408:108261. https://doi.org/10.1016/j.geomorph.2022.108261

    Article  Google Scholar 

  • Hashemi K, Sarıkaya MA, Wilcken KM, Öztürk MZ (2023) Controls on long-term denudation rate of carbonate terrains in the Eastern Mediterranean. Quat Sci Rev 321:108351. https://doi.org/10.1016/j.quascirev.2023.108351

    Article  Google Scholar 

  • Iwahashi J, Yamazaki D (2022) Global polygons for terrain classification divided into uniform slopes and basins. Prog Earth Planet Sci 9:33. https://doi.org/10.1186/s40645-022-00487-2

    Article  Google Scholar 

  • Karte J (1981) Development and present state of German periglacial research in the polar, subpolar and alpine environment. National Research Council of Canada

  • Karte J (1983) Periglacial phenomena and their significance as climatic and edaphic indicators. GeoJournal 7:329–340

    Article  Google Scholar 

  • Kuzucuoğlu C (2019) The physical geography of Turkey: an outline. In: Kuzucuoğlu C, Çiner A, Kazancı N (eds) Landscapes and landforms of Turkey. Springer, Cham, pp 7–15

    Chapter  Google Scholar 

  • Kuzucuoğlu C, Çiner A, Kazancı N (2019a) The geomorphological regions of Turkey. In: Kuzucuoğlu C, Çiner A, Kazancı N (eds) Landscapes and landforms of Turkey. Springer, Cham, pp 41–178

    Chapter  Google Scholar 

  • Kuzucuoğlu C, Şengör CAM, Çiner A (2019b) The Tectonic Control on the Geomorphological Landscapes of Turkey. In: Kuzucuoğlu C, Çiner A, Kazancı N (eds) Landscapes and landforms of Turkey. Springer, Cham, pp 17–40

    Chapter  Google Scholar 

  • Müller J, Gärtner-Roer I, Kenner R et al (2014) Sediment storage and transfer on a periglacial mountain slope (Corvatsch, Switzerland). Geomorphology 218:35–44. https://doi.org/10.1016/j.geomorph.2013.12.002

    Article  Google Scholar 

  • Murton JB (2021) What and where are periglacial landscapes? Permafr Periglac Process 32:186–212. https://doi.org/10.1002/ppp.2102

    Article  Google Scholar 

  • Nigrelli G, Chiarle M (2021) Evolution of temperature indices in the periglacial environment of the European Alps in the period 1990–2019. J Mt Sci 18:2842–2853. https://doi.org/10.1007/s11629-021-6889-x

    Article  Google Scholar 

  • Obu J, Westermann S, Bartsch A et al (2019) Northern Hemisphere permafrost map based on TTOP modelling for 2000–2016 at 1 km2 scale. Earth Sci Rev 193:299–316. https://doi.org/10.1016/j.earscirev.2019.04.023

    Article  Google Scholar 

  • Oliva M, Žebre M, Guglielmin M et al (2018) Permafrost conditions in the Mediterranean region since the last glaciation. Earth Sci Rev 185:397–436. https://doi.org/10.1016/j.earscirev.2018.06.018

    Article  Google Scholar 

  • Oliva M, Serrano E, Fernández-Fernández JM et al (2022) The Iberian Peninsula. Periglacial landscapes of Europe. Springer International Publishing, Cham, pp 43–68

    Chapter  Google Scholar 

  • Öztürk MZ (2010) Uludağ (Zirve) ve Bursa meteoroloji istasyonlarının karşılaştırmalı iklimi. Türk Coğrafya Derg 55:13–24

    Google Scholar 

  • Öztürk MZ (2012) Uludağ’daki periglasiyal süreçlerin, periglasiyal yerşekillerinin ve bunları denetleyen etmenlerin incelenmesi. Nilüfer Akkılıç Kütüphanesi Yayınları

  • Öztürk MZ, Çetinkaya G, Aydın S (2017) Köppen-Geiger İklim Sınıflandırmasına Göre Türkiye’nin İklim Tipleri. Coğrafya Derg 17–27 (In Turkish)

  • Öztürk MZ, Şimşek M, Şener MF, Utlu M (2018) GIS based analysis of doline density on Taurus Mountains, Turkey. Environ Earth Sci 77:536. https://doi.org/10.1007/s12665-018-7717-7

    Article  CAS  Google Scholar 

  • Öztürk MZ, Şimşek M, Utlu M (2021) Anadolu’nun sirk gölleri. Türk Coğrafya Derg 49–60. https://doi.org/10.17211/tcd.998089

  • Perucca L, Esper Angillieri Y (2008) A preliminary inventory of periglacial landforms in the Andes of La Rioja and San Juan, Argentina, at about 28°S. Quat Int 190:171–179. https://doi.org/10.1016/j.quaint.2007.10.007

    Article  Google Scholar 

  • Pickarski N, Kwiecien O, Langgut D, Litt T (2015) Abrupt climate and vegetation variability of eastern Anatolia during the last glacial. Clim Past 11:1491–1505. https://doi.org/10.5194/cp-11-1491-2015

    Article  Google Scholar 

  • Riggs GA, Hall DK, Salomonson VV (1994) A snow index for the Landsat Thematic Mapper and Moderate Resolution Imaging Spectroradiometer. In: Proceedings of IGARSS ’94–1994 IEEE International Geoscience and Remote Sensing Symposium. IEEE, pp 1942–1944

  • Roberts N, Erol O, de Meester T, Uerpmann H-P (1979) Radiocarbon chronology of late Pleistocene Konya lake, Turkey. Nature 281:662–664. https://doi.org/10.1038/281662a0

    Article  CAS  Google Scholar 

  • Sarıkaya MA, Tekeli AE (2014) Satellite Inventory of glaciers in Turkey. Global land ice measurements from space. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 465–480

    Chapter  Google Scholar 

  • Sarıkaya MA, Çiner A, Zreda M (2011) Quaternary glaciations of Turkey. Dev Quat Sci 15:393–403. https://doi.org/10.1016/B978-0-444-53447-7.00030-1

    Article  Google Scholar 

  • Sayhan H (1999) Erciyes’in doğusunda aktüel morfodinamiğine bağlı olarak gelişen tufurların genetik ve morfometrik analizi. Türk Coğrafya Derg 34:141–165

    Google Scholar 

  • Şener MF, Şimşek M, Utlu M et al (2023) Morphotectonic development of surface karst in western Taurus (Türkiye). Carbonates Evaporites 38:78. https://doi.org/10.1007/s13146-023-00900-x

    Article  Google Scholar 

  • Seppi R, Zanoner T, Carton A et al (2015) Current transition from glacial to periglacial processes in the dolomites (South-Eastern Alps). Geomorphology 228:71–86. https://doi.org/10.1016/j.geomorph.2014.08.025

    Article  Google Scholar 

  • Serin S (2019) Honaz Dağı’nın periglasyal jeomorfolojisi (Denizli). Bilecik Şeyh Edebali Üniversitesi

  • Serrano E, de Sanjosé-Blasco JJ, Gómez‐Lende M et al (2019) Periglacial environments and frozen ground in the central Pyrenean high mountain area: ground thermal regime and distribution of landforms and processes. Permafr Periglac Process 30:292–309. https://doi.org/10.1002/ppp.2032

    Article  Google Scholar 

  • Şimşek M, Utlu M, Poyraz M, Öztürk MZ (2019) Geyik Dağı kütlesinin yüzey karstı jeomorfolojisi ve kütle üzerindeki karst-buzul jeomorfolojisi ilişkisi. Ege Coğrafya Derg 29:97–110

    Google Scholar 

  • Şimşek M, Öztürk MZ, Yeşilyurt S, Utlu M (2023) Morphometric characteristics and paleogeographic implication of glacial cirques in Eastern Black Sea Mountains (Türkiye). Geomorphology 441:108889. https://doi.org/10.1016/j.geomorph.2023.108889

    Article  Google Scholar 

  • Tachikawa T, Hato M, Kaku M, Iwasaki A (2011) Characteristics of ASTER GDEM version 2. In: International Geoscience and Remote Sensing Symposium (IGARSS). pp 3657–3660

  • Taherdoost H, Madanchian M (2023) Multi-criteria decision making (MCDM) methods and concepts. Encyclopedia 3:77–87. https://doi.org/10.3390/encyclopedia3010006

    Article  Google Scholar 

  • Türkeş M, Öztürk MZ (2011) Uludağ’da girland ve çember oluşumları. Coğrafi Bilim Derg 9:239–257

    Article  Google Scholar 

  • Türkeş M, Dede V, Dengiz O et al (2023) Periglacial landforms and soil formation on summit of the Mount lda (Kaz Dağı), Biga Peninsula-Turkey. Phys Geogr 44:531–580. https://doi.org/10.1080/02723646.2022.2091312

    Article  Google Scholar 

  • Turoğlu H (2009) Aksu Deresi havzası (Giresun) periglasiyal sahasında kütle hareketleri. Türk Coğrafya Derg 52:41–54

    Google Scholar 

  • Turoğlu H (2022) Kalkanlı Dağlarında Kar yaması Erozyonu Ile oluşan nivasyon oyukları. Jeomorfol Araştırmalar Derg 61–77. https://doi.org/10.46453/jader.1084239

  • Twidale CR, Lageat Y (1994) Climatic geomorphology: a critique. Prog Phys Geogr Earth Environ 18:319–334. https://doi.org/10.1177/030913339401800302

    Article  Google Scholar 

  • Utlu M, Öztürk MZ, Şimşek M (2020) Emli Vadisi’ndeki (Aladağlar) Talus Depolarının Kantitatif Analizlere Göre İncelenmesi. In: Birinci S, Kıvanç Kaymaz Ç, Kızılkan Y (eds) COĞRAFİ PERSPEKTİFLE DAĞ VE DAĞLIK ALANLAR (Sürdürülebilirlik-Yönetim-Örnek Alan İncelemeleri), I. Kriter Yayınevi, İstanbul-Turkey, pp 51–72

  • Vieira GT, Mora C, Ramos M (2003) Ground temperature regimes and geomorphological implications in a Mediterranean mountain (Serra Da Estrela, Portugal). Geomorphology 52:57–72. https://doi.org/10.1016/S0169-555X(02)00248-9

    Article  Google Scholar 

  • Yavaşlı DD, Tucker CJ, Melocik KA (2015) Change in the glacier extent in Turkey during the Landsat era. Remote Sens Environ 163:32–41. https://doi.org/10.1016/j.rse.2015.03.002

    Article  Google Scholar 

  • Zanaga D, Van De Kerchove R, Daems D et al (2022) ESA WorldCover 10 m 2021 v200

  • Zorlu K, Dede V (2023) Assessment of glacial geoheritage by multi-criteria decision making (MCDM) methods in the Yalnızçam Mountains, Northeastern Türkiye. Int J Geoheritage Park 11:100–117. https://doi.org/10.1016/j.ijgeop.2023.01.001

    Article  Google Scholar 

Download references

Acknowledgements

We want to thank editor Attila Çiner and referees for their valuable contributions to the study, as well as to Çağlar Çakır and Yahya Öztürk for providing the photographs.Besides, Muhammed Zeynel Öztürk thanks the Turkish Academy of Sciences for their support within the framework of the Outstanding Young Scientist Award Program (TÜBA-GEBIP-2023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammed Zeynel Öztürk.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Appendix A. supplementary data

Appendix A. supplementary data

The map of the periglacial zones of Anatolia generated in this study can be found in the appendix as shp, tab, and kmz files. Grid codes 1, 2, 3, and 4 indicate weak, moderate, severe periglacial zones, and snow/ice cover, respectively.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Öztürk, M.Z., Taşoğlu, E. Alpine periglacial zones in Anatolia: spatial distribution and main characteristics. Med. Geosc. Rev. (2024). https://doi.org/10.1007/s42990-024-00115-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42990-024-00115-9

Keywords

Navigation