Skip to main content

Advertisement

Log in

Two Decades of Glacier and Glacial Lake Change in the Dhauladhar Mountain Range, Himachal Himalayas, India (2000–2020)

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

This study represents a first of its kind effort in generating a comprehensive database of glaciers (74) and glacial lakes (43) in the Dhauladhar Mountain Range (DMR) located in the Himachal Himalaya region using cloud-free remote sensing data during 2000–2020. The database was constructed by utilizing satellite imagery with varying resolutions, including Landsat 7 ETM + (2000; 30/15 m), Sentinel 2A (2020; 10 m), LISS IV (2020; 5.8 m), and Planet Scope (2020; 3 m). Furthermore, by utilizing slope-dependent numerical approaches, power scaling methods, and modelling techniques (GlabTop2 and HIGTHIM), an attempt has been undertaken to assess the glacier ice thickness, volume and water stored in the DMR. The overall extent of glaciers has exhibited a decline from 50.8 (± 4.38 km2) to 42.84 (± 0.83 km2) during the course of the past two decades (2000–2020), resulting in a total reduction of 7.98 ± 4.45 km2 (~ 15.71 ± 8.76%). Nevertheless, while considering glacier lakes, there has been an observed increase in both number and size. Specifically, the number of glacier lakes has risen from 36 (with an average area of 0.91 ± 0.36 km2) in 2000 to 43 (with an average area of 1.18 ± 0.08 km2) in 2020. This represents a growth rate of 19.45% in terms of number and 29 ± 40.5% in terms of size. The presence of seven newly formed lakes can be attributed to their proglacial nature, indicating and providing evidence for the retreat of the glacier that previously occupied the area. The estimation of ice thickness utilizing the GlabTop2 and HIGTHIM models indicates a range of ice thickness from 9 ± 0.9 to 111.69 ± 11.7 m, with mean values of 36.51 ± 3.63 and 33.37 ± 4.32 m, respectively. The estimated volume and mass of glacier ice are reported as 10.4 ± 0.24 km3 and 9.36 ± 0.22 gigatons, respectively. Our meteorological trend analysis suggests that temperature increases with a slope of 0.023 °K a−1 and precipitation decrease with a slope of 1.425 mm a−1 between 1940 and 2022. Increased accumulation season temperature (winter time) is the primary cause for the reduction of glacier coverage. This study provides a comprehensive assessment of glacier dynamics and their impact on water supply. The generated glacier lake inventory assumes significance specifically for the stakeholders in the formulation of a complete risk assessment strategy for future glacier lake outburst floods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Manuscript has no associated data.

References

  • Agarwal, V., de Vries, M. V. W., Haritashya, U. K., Garg, S., Kargel, J. S., Chen, Y. J., & Shugar, D. H. (2023). Long-term analysis of glaciers and glacier lakes in the Central and Eastern Himalaya. Science of the Total Environment, 898, 165598. https://doi.org/10.1016/j.scitotenv.2023.165598

    Article  CAS  Google Scholar 

  • Alley, R. B., Pollard, D., Parizek, B. R., Anandakrishnan, S., Pourpoint, M., Stevens, N. T., & Holschuh, N. (2019). Possible role for tectonics in the evolving stability of the Greenland Ice Sheet. Journal of Geophysical Research: Earth Surface, 124(1), 97–115. https://doi.org/10.1029/2018JF004714

    Article  Google Scholar 

  • Arnfield, A. J. (2003). Two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat island. International Journal of Climatology: A Journal of the Royal Meteorological Society, 23(1), 1–26. https://doi.org/10.1002/joc.859

    Article  Google Scholar 

  • Asharaf, R., & Kulkarni, A. V. (2023). Estimation of glacier depth and ice volume of Kabul Basin Afghanistan. Journal of Earth System Science, 132(3), 128. https://doi.org/10.1007/s12040-023-02145-7

    Article  Google Scholar 

  • Azam, M. F., Wagnon, P., Berthier, E., Vincent, C., Fujita, K., & Kargel, J. S. (2018). Review of the status and mass changes of Himalayan–Karakoram glaciers. Journal of Glaciology, 64(243), 61–74. https://doi.org/10.1017/jog.2017.86

    Article  Google Scholar 

  • Bahr, D. B., Meier, M. F., & Peckham, S. D. (1997). The physical basis of glacier volume-area scaling. Journal of Geophysical Research: Solid Earth, 102(B9), 20355–20362. https://doi.org/10.1029/97JB01696

    Article  CAS  Google Scholar 

  • Bahr, D. B., Pfeffer, W. T., & Kaser, G. (2015). A review of volume-area scaling of glaciers. Reviews of Geophysics, 53(1), 95–140. https://doi.org/10.1002/2014RG000470

    Article  Google Scholar 

  • Bahuguna, I. M., Rathore, B. P., Brahmbhatt, R., Sharma, M., Dhar, S., Randhawa, S. S., & Ajai. (2014). Are the Himalayan glaciers retreating?. Current Science, 1008–1013.

  • Bahuguna, I., Rathore, B. P., Jasrotia, A. S., Randhawa, S. S., Yadav, S. K. S., Ali, S., & Sharma, S. (2021). Recent glacier area changes in Himalaya–Karakoram and the impact of latitudinal variation. Current Science, 121(7), 929.

    Article  Google Scholar 

  • Benn, D., & Evans, D. J. (2014). Glaciers and Glaciation. Routledge.

    Book  Google Scholar 

  • Bhambri, R., Bolch, T., Chaujar, R. K., & Kulshreshtha, S. C. (2011). Glacier changes in the Garhwal Himalaya, India, from 1968 to 2006 based on remote sensing. Journal of Glaciology, 57(203), 543–556. https://doi.org/10.3189/002214311796905604

    Article  Google Scholar 

  • Bhutiyani, M. R., Kale, V. S., & Pawar, N. J. (2007). Long-term trends in maximum, minimum and mean annual air temperatures across the Northwestern Himalaya during the twentieth century. Climatic Change, 85(1–2), 159–177. https://doi.org/10.1016/j.qsa.2023.100118

    Article  Google Scholar 

  • Bolch, T., Kulkarni, A., Kääb, A., Huggel, C., Paul, F., Cogley, J. G., & Stoffel, M. (2012). The state and fate of Himalayan glaciers. Science, 336(6079), 310–314. https://doi.org/10.1126/science.1215828

    Article  CAS  Google Scholar 

  • Carrivick, J. L., & Tweed, F. S. (2013). Proglacial lakes: Character, behaviour and geological importance. Quaternary Science Reviews, 78, 34–52. https://doi.org/10.1016/j.quascirev.2013.07.028

    Article  Google Scholar 

  • Chand, P., & Sharma, M. C. (2015). Glacier changes in the Ravi basin, North–Western Himalaya (India) during the last four decades (1971–2010/13). Global and Planetary Change, 135, 133–147. https://doi.org/10.1016/j.gloplacha.2015.10.013

    Article  Google Scholar 

  • Chen, J., & Ohmura, A. (1990). Estimation of Alpine glacier water resources and their change since the 1870s. IAHS Publication, 193, 127–135.

    Google Scholar 

  • Chowdhury, A., Sharma, M. C., De Kumar, S., & Debnath, M. (2021). Glacier changes in the Chhombo Chhu Watershed of the Tista basin between 1975 and 2018, the Sikkim Himalaya India. Earth System Science Data, 13(6), 2923–2944. https://doi.org/10.5194/essd-13-2923-2021

    Article  Google Scholar 

  • Das, S., & Sharma, M. C. (2019). Glacier changes between 1971 and 2016 in the Jankar Chhu Watershed, Lahaul Himalaya India. Journal of Glaciology, 65(249), 13–28. https://doi.org/10.1017/jog.2018.77

    Article  Google Scholar 

  • Dhar, S., Randhawa, S., Kishore, N., & Sood, R. K. (2006). Lineament control and seismo-tectonic activity of the areas around Dharamsala, Himalayan Frontal. Zone, Himachal Pradesh, India. Himalayas (Geological Aspects). In: Sakalni PS (ed) Vol. 4. Satish Serial Publishing House, Delhi, pp. 73–78.

  • Dhiman, R., & Singh, S. (2019). Petrogenesis and geochemical evolution of Dhauladhar and Dalhousie granites, NW Himalayas. Journal of the Geological Society of India, 93, 399–408. https://doi.org/10.1007/s12594-019-1194-9

    Article  CAS  Google Scholar 

  • Farinotti, D., Huss, M., Bauder, A., Funk, M., & Truffer, M. (2009). A method to estimate the ice volume and ice-thickness distribution of alpine glaciers. Journal of Glaciology, 55(191), 422–430. https://doi.org/10.3189/002214309788816759

    Article  Google Scholar 

  • Frey, H., Machguth, H., Huss, M., Huggel, C., Bajracharya, S., Bolch, T., & Stoffel, M. (2014). Estimating the volume of glaciers in the Himalayan–Karakoram region using different methods. The Cryosphere, 8(6), 2313–2333.

    Article  Google Scholar 

  • Garg, S., Navinkumar, P. J., Godara, A., Sahu, R., Singh, D. K., & Ramsankaran, R. A. A. J. (2023). Remote sensing the evolution of debris-covered Panchi Nala-A glacier, India (1971–2021) from satellites and Unmanned Aerial Vehicles. Regional Environmental Change, 23(3), 103. https://doi.org/10.1007/s10113-023-02096-1

    Article  Google Scholar 

  • Ghosh, S., Pandey, A. C., Nathawat, M. S., Bahuguna, I. M., & Ajai. (2014). Contrasting signals of glacier changes in Zanskar valley, Jammu & Kashmir, India using remote sensing and GIS. Journal of the Indian Society of Remote Sensing, 42, 817–827. https://doi.org/10.1007/s12524-014-0368-6

    Article  Google Scholar 

  • Gopika, J. S., Kulkarni, A. V., & Prasad, V. (2023). Glacier volume estimation using laminar-flow and volume-area scaling techniques in the Chenab basin. Journal of the Indian Society of Remote Sensing. https://doi.org/10.1007/s12524-023-01744-7

    Article  Google Scholar 

  • Gupta, A., Maheshwari, R., Sweta, G., et al. (2022). Updated Glacial Lake inventory of Indus River Basin based on high-resolution Indian remote sensing satellite data. Journal of the Indian Society of Remote Sensing. https://doi.org/10.1007/s12524-021-01452-0

    Article  Google Scholar 

  • Haeberli, W., & Hölzle, M. (1995). Application of inventory data for estimating characteristics of and regional climate-change effects on mountain glaciers: A pilot study with the European Alps. Annals of Glaciology, 21, 206–212. https://doi.org/10.3189/S0260305500015834

    Article  Google Scholar 

  • Huggel, C., Kääb, A., Haeberli, W., Teysseire, P., & Paul, F. (2002). Remote sensing based assessment of hazards from glacier lake outbursts: A case study in the Swiss Alps. Canadian Geotechnical Journal, 39(2), 316–330. https://doi.org/10.1139/t01-099

    Article  Google Scholar 

  • Huss, M., & Farinotti, D. (2012). Distributed ice thickness and volume of all glaciers around the globe. Journal of Geophysical Research Earth Surface. https://doi.org/10.1029/2012JF002523

    Article  Google Scholar 

  • Huss, M., Farinotti, D., Bauder, A., & Funk, M. (2008). Modelling runoff from highly glacierized alpine drainage basins in a changing climate. Hydrological Processes, 22(19), 3888–3902. https://doi.org/10.1002/hyp.7055

    Article  Google Scholar 

  • Huss, M., & Fischer, M. (2016). Sensitivity of very small glaciers in the Swiss Alps to future climate change. Frontiers in Earth Science, 4, 34. https://doi.org/10.3389/feart.2016.00034

    Article  Google Scholar 

  • Jiskoot, H., & Mueller, M. S. (2012). Glacier fragmentation effects on surface energy balance and runoff: Field measurements and distributed modelling. Hydrological Processes, 26(12), 1861–1875. https://doi.org/10.1002/hyp.9288

    Article  Google Scholar 

  • Kaser, G., Großhauser, M., & Marzeion, B. (2010). Contribution potential of glaciers to water availability in different climate regimes. Proceedings of the National Academy of Sciences, 107(47), 20223–20227. https://doi.org/10.1073/pnas.1008162107

    Article  Google Scholar 

  • Kaushik, S., Dharpure, J. K., Joshi, P. K., Ramanathan, A. L., & Singh, T. (2020). Climate change drives glacier retreat in Bhaga basin located in Himachal Pradesh India. Geocarto International, 35(11), 1179–1198. https://doi.org/10.1080/10106049.2018.1557260

    Article  Google Scholar 

  • Kulkarni, A. V., Bahuguna, I. M., Rathore, B. P., Singh, S. K., Randhawa, S. S., Sood, R. K., & Dhar, S. (2007). Glacial retreat in Himalaya using Indian remote sensing satellite data. Current science, 69–74.

  • LIGG, Wecs, & NEA. (1988). Report on First Expedition to Glaciers and Glacier Lakes in the Pumqu (Arun) and Poiqu (Bhote-Sun Kosi) River Basins, Xizang (Tibet). Science Press, Beijing, China.

    Google Scholar 

  • Linsbauer, A., Frey, H., Haeberli, W., Machguth, H., Azam, M. F., & Allen, S. (2016). Modelling glacier-bed overdeepenings and possible future lakes for the glaciers in the Himalaya—Karakoram region. Annals of Glaciology, 57(71), 119–130. https://doi.org/10.3189/2016AoG71A627

    Article  Google Scholar 

  • Linsbauer, A., Paul, F., & Haeberli, W. (2012). Modeling glacier thickness distribution and bed topography over entire mountain ranges with GlabTop: Application of a fast and robust approach. Journal of Geophysical Research Earth Surface. https://doi.org/10.1029/2011JF002313

    Article  Google Scholar 

  • Mahajan, A. K., & Kumar, S. (1994). Linear features registered on the Landsat imagery and seismic activity in the Dharamsala-Palampur region (NW Himalaya). Geofizika, 11(1), 15–25.

    Google Scholar 

  • Millan, R., Mouginot, J., Rabatel, A., & Morlighem, M. (2022). Ice velocity and thickness of the world’s glaciers. Nature Geoscience, 15(2), 124–129. https://doi.org/10.1038/s41561-021-00885-z

    Article  CAS  Google Scholar 

  • Mir, R. A., Majeed, Z., Ahmed, R., Jain, S. K., Ahmed, S. T., Mukhtar, M. A., & Wani, G. F. (2023). Heterogeneity in glacier area loss in response to climate change in selected basins of western Himalaya. In: Climate Change and Environmental Impacts: Past, Present and Future Perspective (pp. 137–174). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-031-13119-6_8

  • Mool, P. K., Wangda, D., Bajracharya, S. R., Kunzang, K., Gurung, D. R., & Joshi, S. P. (2001). Inventory of glaciers, glacial lakes and glacial lake outburst floods. Monitoring and Early Warning Systems in the Hindu Kush-Himalayan Region: Bhutan.

  • Nayak, S., & Mandal, M. (2019). Impact of land use and land cover changes on temperature trends over India. Land Use Policy, 89, 104238. https://doi.org/10.1016/j.landusepol.2019.104238

    Article  Google Scholar 

  • Pandey, P., Ali, S. N., & Champati Ray, P. K. (2021). Glacier-glacial lake interactions and glacial lake development in the central Himalaya, India (1994–2017). Journal of Earth Science. https://doi.org/10.1007/s12583-020-1056-9

    Article  Google Scholar 

  • Pandey, P., & Venkataraman, G. (2013). Changes in the glaciers of Chandra-Bhaga basin, Himachal Himalaya, India, between 1980 and 2010 measured using remote sensing. International Journal of Remote Sensing, 34(15), 5584–5597. https://doi.org/10.1080/01431161.2013.793464

    Article  Google Scholar 

  • Paul, F., Barrand, N. E., Baumann, S., Berthier, E., Bolch, T., Casey, K., & Winsvold, S. (2013). On the accuracy of glacier outlines derived from remote-sensing data. Annals of Glaciology, 54(63), 171–182. https://doi.org/10.3189/2013AoG63A296

    Article  Google Scholar 

  • Paul, F., Kääb, A., Maisch, M., Kellenberger, T., & Haeberli, W. (2004). Rapid disintegration of Alpine glaciers observed with satellite data. Geophysical Research Letters. https://doi.org/10.1029/2004GL020816

    Article  Google Scholar 

  • Pepin, N. C., Arnone, E., Gobiet, A., Haslinger, K., Kotlarski, S., Notarnicola, C., & Adler, C. (2022). Climate changes and their elevational patterns in the mountains of the world. Reviews of Geophysics, 60(1), e2020RG000730. https://doi.org/10.1029/2020RG000730

    Article  Google Scholar 

  • Prakash, C., & Nagarajan, R. (2018). Glacial lake changes and outburst flood hazard in Chandra basin, North-Western Indian Himalaya. Geomatics, Natural Hazards and Risk, 9(1), 337–355. https://doi.org/10.1080/19475705.2018.1445663

    Article  Google Scholar 

  • Racoviteanu, A. E., Paul, F., Raup, B., Khalsa, S. J. S., & Armstrong, R. (2009). Challenges and recommendations in mapping of glacier parameters from space: Results of the 2008 Global Land Ice Measurements from Space (GLIMS) workshop, Boulder, Colorado, USA. Annals of Glaciology, 50(53), 53–69. https://doi.org/10.3189/172756410790595804

    Article  Google Scholar 

  • Rai, S. K., Sahu, R., Dhar, S., & Kumar, A. (2023). Four decades of Glacier and Glacial Lake dynamics in Kishtwar high altitude National Park. Chenab Basin, Jammu and Kashmir, India: Modeling Earth Systems and Environment. https://doi.org/10.1007/s40808-023-01836-w

    Book  Google Scholar 

  • Rai, S. K., Sahu, R., Dhar, S., Tripathi, N., & Kumar, A. (2024). Rapid expansion of proglacial lake and deglaciation of host glacier in Kishtwar Himalya, Jammu and Kashmir, India, from 1993 to 2020. Himalayan Geology, 45(1), 75–88.

    Google Scholar 

  • Randhawa, S. S., Dhar, S., Rathore, B. P., Kumar, R., Thakur, N., Rana, P., & Taloor, A. K. (2021). Moraine Dammed lakes inventory in Satluj, Ravi, Chenab and Beas Basins of Himachal Pradesh, India. In: Water, Cryosphere, and Climate Change in the Himalayas: A Geospatial Approach (pp. 129–144). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-67932-3_8

  • Romshoo, S. A., Abdullah, T., Rashid, I., & Bahuguna, I. M. (2022). Explaining the differential response of glaciers across different mountain ranges in the north-western Himalaya. India. Cold Regions Science and Technology, 196, 103515. https://doi.org/10.1016/j.coldregions.2022.103515

    Article  Google Scholar 

  • Sahu, R., & Gupta, R. D. (2020). Glacier mapping and change analysis in Chandra basin, Western Himalaya, India during 1971–2016. International Journal of Remote Sensing, 41(18), 6914–6945. https://doi.org/10.1080/01431161.2020.1752412

    Article  Google Scholar 

  • Sahu, R., Ramsankaran, R. A. A. J., Bhambri, R., Verma, P., & Chand, P. (2023). Evolution of supraglacial lakes from 1990 to 2020 in the Himalaya-Karakoram region using cloud-based google earth engine platform. Journal of the Indian Society of Remote Sensing. https://doi.org/10.1007/s12524-023-01773-2

    Article  Google Scholar 

  • Salerno, F., Guyennon, N., Thakuri, S., Viviano, G., Romano, E., Vuillermoz, E., & Tartari, G. (2015). Weak precipitation, warm winters and springs impact glaciers of south slopes of Mt. Everest (central Himalaya) in the last 2 decades (1994–2013). The Cryosphere, 9(3), 1229–1247. https://doi.org/10.5194/tc-9-1229-2015

    Article  Google Scholar 

  • Salerno, F., Thakuri, S., Guyennon, N., Viviano, G., & Tartari, G. (2016). Glacier melting and precipitation trends detected by surface area changes in Himalayan ponds. The Cryosphere, 10(4), 1433–1448. https://doi.org/10.5194/tc-10-1433-2016

    Article  Google Scholar 

  • Shugar, D. H., Burr, A., Haritashya, U. K., Kargel, J. S., Watson, S., Kennedy, M. C., Bevington, A. R., Betts, R. A., Harrison, S., & Strattman, K. (2020). Rapid worldwide growth of glacial lakes since 1990. Nature Climate Change, 10(10), 939–945. https://doi.org/10.1038/s41558-020-0855-4

    Article  CAS  Google Scholar 

  • Shukla, A., Arora, M. K., & Gupta, R. P. (2010). Synergistic approach for mapping debris-covered glaciers using optical–thermal remote sensing data with inputs from geomorphometric parameters. Remote Sensing of Environment, 114(7), 1378–1387. https://doi.org/10.1016/j.rse.2010.01.015

    Article  Google Scholar 

  • Srinivasalu, P., Kulkarni, A. V., Remya, S. N., Shirsat, T., & Goswami, A. (2023). Himalayan glacier thickness mapper (HIGTHIM) tool: An automated approach to map potential glacier lakes and expansion of existing lakes. Polar Science. https://doi.org/10.1016/j.polar.2023.101008

    Article  Google Scholar 

  • Van Pelt, W. J. J., Oerlemans, J., Reijmer, C. H., Pettersson, R., Pohjola, V. A., Isaksson, E., & Divine, D. (2013). An iterative inverse method to estimate basal topography and initialize ice flow models. The Cryosphere, 7(3), 987–1006. https://doi.org/10.5194/tc-7-987-2013

    Article  Google Scholar 

  • Vishwakarma, B. D., Ramsankaran, R. A. A. J., Azam, M. F., Bolch, T., Mandal, A., Srivastava, S., & Bamber, J. (2022). Challenges in understanding the variability of the cryosphere in the Himalaya and its impact on regional water resources. Frontiers in Water, 4, 909246. https://doi.org/10.3389/frwa.2022.909246

    Article  Google Scholar 

  • Yao, T., Thompson, L., Yang, W., Yu, W., Gao, Y., Guo, X., & Joswiak, D. (2012). Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nature Climate Change, 2(9), 663–667. https://doi.org/10.1038/nclimate1580

    Article  Google Scholar 

  • Yao, X., Liu, S., Han, L., Sun, M., & Zhao, L. (2018). Definition and classification system of glacial lake for inventory and hazards study. Journal of Geographical Sciences, 28, 193–205. https://doi.org/10.1007/s11442-018-1467-z

    Article  Google Scholar 

  • Zhang, G., Bolch, T., Yao, T., Rounce, D. R., Chen, W., Veh, G., & Wang, W. (2023). Underestimated mass loss from lake-terminating glaciers in the greater Himalaya. Nature Geoscience, 16(4), 333–338. https://doi.org/10.1038/s41561-023-01150-1

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the USGS and ESA for providing satellite data at no cost. SKR is thankful to NRSC and Planet Lab for providing high-resolution LISS IV and PlanetScope scenes. SD thankfully acknowledges DST for supporting this study through Strategic Programmes, Large Initiatives, and Coordinated Action Enabler—Climate Change Program (SPLICE-CCP) under HICAB (Network Programmes), Department of Science and Technology (DST), Government of India.

Funding

This work is partially supported by Department of Science and Technology (DST), Government of India, with project no. DST/CCP/HICAB/SN- J&K/173/2018.

Author information

Authors and Affiliations

Authors

Contributions

SKR and SD conceptualised and designed the study. SKR collected data and generated and interpreted the results and wrote the manuscript with help of SD and RS. RS and AK also contribute to interpretation and writing the manuscript. All the authors have thoroughly read the paper and contributed to the interpretation of the results.

Corresponding author

Correspondence to Sunil Dhar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4527 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rai, S.K., Dhar, S., Sahu, R. et al. Two Decades of Glacier and Glacial Lake Change in the Dhauladhar Mountain Range, Himachal Himalayas, India (2000–2020). J Indian Soc Remote Sens 52, 633–644 (2024). https://doi.org/10.1007/s12524-024-01849-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-024-01849-7

Keywords

Navigation