Skip to main content
Log in

Energy decay analysis for Porous elastic system with microtemperature: Classical vs second spectrum approach

  • Original Paper
  • Published:
Partial Differential Equations and Applications Aims and scope Submit manuscript

Abstract

The stability features of the dissipative porous elastic systems have piqued the interest of several researchers. The desired exponential decay property of the energy is obtained unless the nonphysical equal speed condition is imposed. This work analyzes the porous elastic system with micro-temperature. First, the exponential stability is obtained in case where there is an assumption on physical constants. Then from a second-spectrum viewpoint, the system’s global well-posedness is proved using the Faedo–Galerkin method. Later, we prove that the microtemperature effect is enough to get the exponential stability of the solution without any assumption on the physical constants. A numerical scheme is introduced. Finally, we present some numerical results which demonstrates the exponential behavior of the solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability Statement

The manuscript has no associated real data.

References

  1. Cowin, S.C., Nunziato, J.W.: Linear elastic materials with voids. J. Elast. 13, 125–147 (1983)

    Article  Google Scholar 

  2. Cowin, S.C.: The viscoelastic behavior of linear elastic materials with voids. J. Elast. 15(2), 185–191 (1985)

    Article  MathSciNet  Google Scholar 

  3. Goodman, M.A., Cowin, S.C.: A continuum theory for granular materials. Arch. Ration. Mech. Anal. 44(4), 249–266 (1972)

    Article  MathSciNet  Google Scholar 

  4. Nunziato, J.W., Cowin, S.C.: A nonlinear theory of elastic materials with voids. Arch. Ration. Mech. Anal. 72(2), 175–201 (1979)

    Article  MathSciNet  Google Scholar 

  5. Iesan, D.: A theory of thermoelastic materials with voids. Acta Mech. 60(1–2), 67–89 (1986)

    Article  Google Scholar 

  6. Iesan, D.: On a theory of micromorphic elastic solids with microtemperatures. J. Therm. Stresses 24(8), 737–752 (2001)

    Article  MathSciNet  Google Scholar 

  7. Iesan, D.: Thermoelastic models of continua. Springer, Dordrecht (2004)

    Book  Google Scholar 

  8. Iesan, D., Quintanilla, R.: A theory of porous thermoviscoelastic mixtures. J. Therm. Stresses 30(7), 693–714 (2007)

    Article  MathSciNet  Google Scholar 

  9. Chirita, S., Ciarletta, M., D’Apice, C.: On the theory of thermoelasticity with microtemperatures. J. Math. Anal. Appl. 397(1), 349–361 (2013)

    Article  MathSciNet  Google Scholar 

  10. Cowin, S.C., Nunziato, J.W.: Linear elastic materials with voids. J. Elast. 13(2), 125–147 (1983)

    Article  Google Scholar 

  11. Iesan, D., Quintanilla, R.: On a theory of thermoelasticity with microtemperatures. J. Therm. Stresses 23(3), 199–215 (2000)

    Article  MathSciNet  Google Scholar 

  12. Quintanilla, R.: Slow decay for one-dimensional porous dissipation elasticity. Appl. Math. Lett. 16(4), 487–491 (2003)

    Article  MathSciNet  Google Scholar 

  13. Casas, P.S., Quintanilla, R.: Exponential stability in thermoelasticity with microtemperatures. Int. J. Eng. Sci. 43(1–2), 33–47 (2005)

    Article  MathSciNet  Google Scholar 

  14. Feng, B., Yan, L., Almeida Jãnior, D.S.: Stabilization for an inhomogeneous porous-elastic system with temperature and microtemperature. Zeitschrift fur Angewandte Mathematik und Mechanik 101, e202000058 (2021)

    Article  MathSciNet  Google Scholar 

  15. Feng, B., Freitas, M.M., Almeida Jãnior, D.S., Ramos, A.J.A.: Quasi-stability and attractors for a porous-elastic system with history memory. Appl. Anal. 101(17), 6237–6254 (2022)

    Article  MathSciNet  Google Scholar 

  16. Feng, B., Freitas, M.M., Almeida, D.S., Ramos, A.J.A., Caljaro, R.Q.: Global attractors for porous-elasticity system from second spectrum viewpoint. Nonlinear Anal.: Real World Appl. 74, 103922 (2023)

    Article  MathSciNet  Google Scholar 

  17. Casas, P.S., Quintanilla, R.: Exponential decay in one-dimensional porous-thermo-elasticity. Mech. Res. Commun. 32(6), 652–658 (2005)

    Article  MathSciNet  Google Scholar 

  18. Magana, A., Quintanilla, R.: On the time decay of solutions in one-dimensional theories of porous materials. Int. J. Solids Struct. 43(11–12), 3414–3427 (2006)

    Article  MathSciNet  Google Scholar 

  19. Santos, M.L., Campelo, A.D.S., Almeida Junior, D.S.: Rates of decay for porous elastic system weakly dissipative. Acta Appl. Math. 151, 1–16 (2017)

    Article  MathSciNet  Google Scholar 

  20. Santos, M.L., Campelo, A.D.S., Almeida Junior, D.S.: On the decay rates of porous elastic systems. J. Elast. 127, 79–101 (2017)

    Article  MathSciNet  Google Scholar 

  21. Apalara, T.A.: On the stability of porous-elastic system with microtemparatures. J. Therm. Stress. 42(2), 265–278 (2019). https://doi.org/10.1080/01495739.2018.1486688

    Article  Google Scholar 

  22. Oliveira, M. L. S., Maciel, E. S., Dos Santos, M. J.: Porous elastic system with Kelvin–Voigt: analyticity and optimal decay rate. Appl. Anal. (2020)

  23. Khochemane, H.E.: Exponential stability for a thermoelastic porous system with microtemperatures effects. Acta Appl. Math. 173, 8 (2021)

    Article  MathSciNet  Google Scholar 

  24. Lacheheb, I., Messaoudi, S.A., Zahri, M.: Asymptotic stability of porous-elastic system with thermoelasticity of type III. Arab. J. Math 10, 137–155 (2021)

    Article  MathSciNet  Google Scholar 

  25. Liu, W., Chen, M.: Well-posedness and exponential decay for a porous thermoelastic system with second sound and a time-varying delay term in the internal feedback. Continuum Mech. Thermodyn. 29, 731–746 (2017)

    Article  MathSciNet  Google Scholar 

  26. Junior, D.S.A., Ramos, A.J.A., Freitas, M.M., Dos Santos, M.J., Arwadi, T.E.: Polynomial stability for the equations of porous elasticity in one-dimensional bounded domains. Math. Mech. Solids 27(2), 308–318 (2022)

    Article  MathSciNet  Google Scholar 

  27. Ramos, A. J. A., Junior, D. S. A., Freitas, M. M., et al. (2019). A new exponential decay result for one-dimensional porous dissipation elasticity from second spectrum viewpoint. Appl. Math. Lett.

  28. Feng, B.: Exponential stabilization of a Timoshenko system with thermodiffusion effects. Z. Angew. Math. Phys. 72, 138 (2021)

    Article  MathSciNet  Google Scholar 

  29. El Arwadi, T., Youssef, W.: On the stabilization of the bresse beam with kelvin-voigt damping. Appl. Math. Optim. 83, 1831–1857 (2021)

    Article  MathSciNet  Google Scholar 

  30. Almeida Junior, D.S., Ramos, A.J.A.: On the nature of dissipative Timoshenko systems at light of the second spectrum. Z. Angew. Math. Phys. 68(145), 31 (2017)

    MathSciNet  Google Scholar 

  31. Almeida Junior, D.S., Ramos, A.J.A., Santos, M.L., Miranda, L.G.R.: Asymptotic behavior of weakly dissipative Bresse-Timoshenko system on influence of the second spectrum of frequency. Zeitschrift fur Angewandte Mathematik und Mechanik 98(8), 1320–1333 (2018)

    Article  MathSciNet  Google Scholar 

  32. Almeida Junior, D.S., Elishakoff, I., Ramos, A.J.A., Miranda, L.G.R.: The hypothesis of equal wave speeds for stabilization of Bresse-Timoshenko system is not necessary anymore: the time delay cases. IMA J. Appl. Math. 84(4), 763–796 (2019)

    Article  MathSciNet  Google Scholar 

  33. Elishakoff, I. (2010). An equation both more consistent and simpler than the Bresse-Timoshenko equation. In: Advances in Mathematical Modelling and Experimental Methods for Materials and Structures, Solid Mechanics and Its Applications (pp. 249–254). Springer.

  34. Magana, A., Quintanilla, R.: On the time decay of solutions in one-dimensional theories of porous materials. Int. J. Solids Struct. 43, 3414–3427 (2006)

    Article  MathSciNet  Google Scholar 

  35. Bernardi, C., Copetti, M.I.M.: Discretization of a nonlinear dynamic thermoviscoelastic Timoshenko beam model. Z. Angew. Math. Mech. 97, 532–549 (2017)

    Article  MathSciNet  Google Scholar 

  36. Ciarlet, P.G.: Basic error estimates for elliptic problems. In: Ciarlet, P.G., Lions, J.L. (eds.) Handbook of numerical analysis, vol. 2, pp. 17–351. Elsevier Science Publishers B.V, North-Holland (1993)

    Google Scholar 

  37. Andrews, K.T., Fernandez, J.R., Shillor, M.: Numerical analysis of dynamic thermoviscoelastic contact with damage of a rod. IMA J. Appl. Math. 70(6), 768–795 (2005)

    Article  MathSciNet  Google Scholar 

  38. Campo, M., Fernandez, J.R., Kuttler, K.L., Shillor, M., Viano, J.M.: Numerical analysis and simulations of a dynamic frictionless contact problem with damage. Comput. Methods Appl. Mech. Eng. 196(1–3), 476–488 (2006)

    Article  MathSciNet  Google Scholar 

  39. Lions, J.L.: Quelques methodes de resolution des problemes aux limites non lineaires. Dunod Gauthier-Villars, Paris (1969)

    Google Scholar 

  40. Saci, M., Eddine Khochemane, H., Djebabla, A.: On the stability of linear porous elastic materials with microtemperatures effects and frictional damping. Appl. Anal. 1–15 (2020)

  41. Zougheib, H., El Arwadi, T.: Energy decay analysis for Porous elastic system with thermoelasticity of type III: a second spectrum approach. Results Appl. Math. 21, 100435 (2024). https://doi.org/10.1016/j.rinam.2024.100435

    Article  MathSciNet  Google Scholar 

  42. Zougheib, H., Arwadi, T.E., Soufyane, A.: Asymptotic behavior of the porous elastic system with dual phase lag model: classical versus second spectrum perspectives. Stud. Appl. Math. 151, 1136–1165 (2023). https://doi.org/10.1111/sapm.12622

    Article  MathSciNet  Google Scholar 

  43. Keddi, A., Messaoudi, S., Alahyane, M.: On a thermoelastic Timoshenko system without the second spectrum: Existence and stability. J. Therm. Stresses 46(8), 823–838 (2023). https://doi.org/10.1080/01495739.2023.2191662

    Article  Google Scholar 

  44. Apalara, T., Raposo, C., Ige, A.: Thermoelastic Timoshenko system free of second spectrum. Appl. Math. Lett. 126, 107793 (2022)

    Article  MathSciNet  Google Scholar 

  45. Copetti, M.I.M., El Arwadi, T., Fernández, J.R., Naso, M.G., Youssef, W.: Analysis of a contact problem for a viscoelastic bresse system. ESAIM Math. Model Numer. Anal. 55(3), 887–911 (2021)

    Article  MathSciNet  Google Scholar 

  46. Zougheib, H., El Arwadi, T., Madureira, R.L.R., Rincon, M.A.: Do equal speed condition and exponential stability relate for the truncated thermoelastic Timoshenko system under Green Naghdi law? J. Therm. Stresses 46(8), 673–705 (2023). https://doi.org/10.1080/01495739.2023.2217233

    Article  Google Scholar 

Download references

Acknowledgment

The authors would like to thank the anonymous referees for valuable remarks, suggestions, and careful reading

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toufic El Arwadi.

Ethics declarations

Conflict of Interest

The authors have not disclosed any competing interests.

Additional information

The manuscript belongs to Theory of PDEs editor by Eduardo Teixeira.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zougheib, H., Arwadi, T.E., El-Hindi, M. et al. Energy decay analysis for Porous elastic system with microtemperature: Classical vs second spectrum approach. Partial Differ. Equ. Appl. 5, 6 (2024). https://doi.org/10.1007/s42985-024-00273-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42985-024-00273-3

Keywords

Mathematics Subject Classification

Navigation