Skip to main content
Log in

Existence and concentration of solution for Schrödinger-Poisson system with local potential

  • Original Paper
  • Published:
Partial Differential Equations and Applications Aims and scope Submit manuscript

Abstract

In this paper, we study the following nonlinear Schrödinger-Poisson type equation

$$\begin{aligned} {\left\{ \begin{array}{ll} -\varepsilon ^2\Delta u+V(x)u+K(x)\phi u=f(u)&{}\text {in}\ {\mathbb {R}}^3,\\ -\varepsilon ^2\Delta \phi =K(x)u^2&{}\text {in}\ {\mathbb {R}}^3, \end{array}\right. } \end{aligned}$$

where \(\varepsilon >0\) is a small parameter, \(V: {\mathbb {R}}^3\rightarrow {\mathbb {R}}\) is a continuous potential and \(K: {\mathbb {R}}^3\rightarrow {\mathbb {R}}\) is used to describe the electron charge. Under suitable assumptions on V(x), K(x) and f, we prove existence and concentration properties of ground state solutions for \(\varepsilon >0\) small. Moreover, we summarize some open problems for the Schrödinger-Poisson system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Ambrosetti, A.: On Schrödinger-Poisson systems. Milan J. Math. 76, 257–274 (2008)

    Article  MathSciNet  Google Scholar 

  2. Ambrosetti, A., Ruiz, D.: Multiple bound states for the Schrödinger-Poisson problem. Commun. Contemp. Math. 10(3), 391–404 (2008)

    Article  MathSciNet  Google Scholar 

  3. Azzollini, A.: Concentration and compactness in nonlinear Schrödinger-Poisson system with a general nonlinearity. J. Differ. Equ. 249(7), 1746–1763 (2010)

    Article  Google Scholar 

  4. Azzollini, A., d’Avenia, P., Pomponio, A.: On the Schrödinger-Maxwell equations under the effect of a general nonlinear term. Ann. Inst. H. Poincaré Anal. Non Linéaire 27(2),779–791 (2010)

  5. Benci, V., Fortunato, D.: An eigenvalue problem for the Schrödinger-Maxwell equations. Topol. Methods Nonlinear Anal. 11(2), 283–293 (1998)

    Article  MathSciNet  Google Scholar 

  6. Benci, V., Fortunato, D.: The nonlinear Klein-Gordon equation coupled with the Maxwell equations. In: Proceedings of the Third World Congress of Nonlinear Analysts, Part 9 (Catania, 2000), volume 47, pages 6065–6072 (2001)

  7. Benci, V., Fortunato, D.: Solitary waves of the nonlinear Klein-Gordon equation coupled with the Maxwell equations. Rev. Math. Phys. 14(4), 409–420 (2002)

    Article  MathSciNet  Google Scholar 

  8. Cerami, G., Vaira, G.: Positive solutions for some non-autonomous Schrödinger-Poisson systems. J. Differ. Equ. 248(3), 521–543 (2010)

    Article  Google Scholar 

  9. Chen, C., Lin, C.: Uniqueness of the ground state solutions of \(\Delta u+f(u)=0\) in \({ R}^n,\;n\ge 3\). Comm. Partial Differ. Equ. 16(8–9), 1549–1572 (1991)

    Article  Google Scholar 

  10. Chen, S., Fiscella, A., Pucci, P., Tang, X.: Semiclassical ground state solutions for critical Schrödinger-Poisson systems with lower perturbations. J. Differ. Equ. 268(6), 2672–2716 (2020)

    Article  Google Scholar 

  11. Coffman, C.: Uniqueness of the ground state solution for \(\Delta u-u+u^{3}=0\) and a variational characterization of other solutions. Arch. Rational Mech. Anal. 46, 81–95 (1972)

    Article  MathSciNet  Google Scholar 

  12. D’Aprile, T., Mugnai, D.: Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrödinger-Maxwell equations. Proc. Roy. Soc. Edinburgh Sect. A 134, 893–906 (2004)

  13. D’Aprile, T., Wei, J.: On bound states concentrating on spheres for the Maxwell-Schrödinger equation. SIAM J. Math. Anal. 37(1), 321–342 (2005)

  14. del Pino, M., Felmer, P.L.: Local mountain passes for semilinear elliptic problems in unbounded domains. Calc. Var. Partial Differ. Equ. 4(2), 121–137 (1996)

    Article  MathSciNet  Google Scholar 

  15. Ding, Y., Wei, J.: Semiclassical states for nonlinear Schrödinger equations with sign-changing potentials. J. Funct. Anal. 251(2), 546–572 (2007)

    Article  MathSciNet  Google Scholar 

  16. Floer, A., Weinstein, A.: Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential. J. Funct. Anal. 69(3), 397–408 (1986)

    Article  MathSciNet  Google Scholar 

  17. He, X.: Multiplicity and concentration of positive solutions for the Schrödinger-Poisson equations. Z. Angew. Math. Phys. 62, 869–889 (2011)

    Article  MathSciNet  Google Scholar 

  18. He, X., Zou, W.: Existence and concentration of ground states for Schrödinger-Poisson equations with critical growth. J. Math. Phys. 53(2), 023702 (2012). 19

    Article  MathSciNet  Google Scholar 

  19. Jiang, Y., Zhou, H.: Schrödinger-Poisson system with steep potential well. J. Differ. Equ. 251(3), 582–608 (2011)

    Article  Google Scholar 

  20. Jin, T., Yang, Z.: The fractional Schrödinger-Poisson systems with infinitely many solutions. J. Korean Math. Soc. 57(2), 489–506 (2020)

    MathSciNet  MATH  Google Scholar 

  21. Kwong, M.: Uniqueness of positive solutions of \(\Delta u-u+u^p=0\) in \({{ R}}^n\). Arch. Rational Mech. Anal. 105(3), 243–266 (1989)

    Article  MathSciNet  Google Scholar 

  22. Landkof, N.: Foundations of modern potential theory. Springer-Verlag, New York (1972)

    Book  Google Scholar 

  23. Li, G., Peng, S., Yan, S.: Infinitely many positive solutions for the nonlinear Schrödinger-Poisson system. Commun. Contemp. Math. 12(6), 1069–1092 (2010)

    Article  MathSciNet  Google Scholar 

  24. Li, Y., Li, F., Shi, J.: Existence and multiplicity of positive solutions to Schrödinger-Poisson type systems with critical nonlocal term. Calc. Var. Partial Differ. Equ. 56(5), Paper No. 134, 17 (2017)

  25. Lieb, E., Loss, M.: Analysis. Grad. Stud. Math. 14, AMS (1997)

  26. Lions, P.-L.: The concentration-compactness principle in the calculus of variations. The locally compact case. I,II. Ann. Inst. H. Poincaré Anal. Non Linéaire 1(2), 109–145 (1984)

  27. Lions, P.-L.: Solutions of Hartree-Fock equations for Coulomb systems. Commun. Math. Phys. 109(1), 33–97 (1987)

    Article  MathSciNet  Google Scholar 

  28. Liu, S., Mosconi, S.: On the Schrödinger-Poisson system with indefinite potential and 3-sublinear nonlinearity. J. Differ. Equ. 269(1), 689–712 (2020)

    Article  Google Scholar 

  29. Mercuri, C., Moroz, V., Van Schaftingen, J.: Groundstates and radial solutions to nonlinear Schrödinger-Poisson-Slater equations at the critical frequency. Calc. Var. Partial Differ. Equ. 55(6), Art. 146, 58 (2016)

  30. Rabinowitz, P.H.: On a class of nonlinear Schrödinger equations. Z. Angew. Math. Phys. 43(2), 270–291 (1992)

    Article  MathSciNet  Google Scholar 

  31. Ruiz, D.: Semiclassical states for coupled Schrödinger-Maxwell equations: concentration around a sphere. Math. Models Methods Appl. Sci. 15(1), 141–164 (2005)

    Article  MathSciNet  Google Scholar 

  32. Ruiz, D.: The Schrödinger-Poisson equation under the effect of a nonlinear local term. J. Funct. Anal. 237(2), 655–674 (2006)

    Article  MathSciNet  Google Scholar 

  33. Sun, J., Wu, T.: Bound state nodal solutions for the non-autonomous Schrödinger-Poisson system in \({\mathbb{R}}^3\). J. Differ. Equ. 268(11), 7121–7163 (2020)

    Article  Google Scholar 

  34. Wang, J., Tian, L., Xu, J., Zhang, F.: Existence and concentration of positive solutions for semilinear Schrödinger-Poisson systems in \({\mathbb{R}}^3\). Calc. Var. Partial Differ. Equ. 48(1–2), 243–273 (2013)

    Article  Google Scholar 

  35. Wang, J., Tian, L., Xu, J., Zhang, F.: Existence of multiple positive solutions for Schrödinger-Poisson systems with critical growth. Z. Angew. Math. Phys. 66(5), 2441–2471 (2015)

    Article  MathSciNet  Google Scholar 

  36. Wang, Z., Zhou, H.: Positive solution for a nonlinear stationary Schrödinger-Poisson system in \(\mathbb{R}^3\). Discrete Contin. Dyn. Syst. 18(4), 809–816 (2007)

    Article  MathSciNet  Google Scholar 

  37. Willem, M.: Minimax theorems. Progress in nonlinear differential equations and their applications, vol. 24. Birkhäuser Boston Inc, Boston (1996)

    Google Scholar 

  38. Yang, M.: Existence of semiclassical solutions for some critical Schrödinger-Poisson equations with potentials. Nonlinear Anal. 198, 111874 (2020). 26

    Article  MathSciNet  Google Scholar 

  39. Yang, M., Shen, Z., Ding, Y.: Multiple semiclassical solutions for the nonlinear Maxwell-Schrödinger system. Nonlinear Anal. 71(3–4), 730–739 (2009)

    Article  MathSciNet  Google Scholar 

  40. Yang, Z., Yu, Y., Zhao, F.: The concentration behavior of ground state solutions for a critical fractional Schrödinger-Poisson system. Math. Nachr. 292(8), 1837–1868 (2019)

    Article  MathSciNet  Google Scholar 

  41. Yang, Z., Yu, Y., Zhao, F.: Concentration behavior of ground state solutions for a fractional Schrödinger-Poisson system involving critical exponent. Commun. Contemp. Math. 21(6), 1850027 (2019). 46

    Article  MathSciNet  Google Scholar 

  42. Yang, Z., Zhang, W., Zhao, F.: Existence and concentration results for fractional Schrödinger-Poisson system via penalization method. Electron. J. Differ. Equ. Paper No. 14, 31 (2021)

  43. Yu, Y., Zhao, F., Zhao, L.: The concentration behavior of ground state solutions for a fractional Schrödinger-Poisson system. Calc. Var. Partial Differ. Equ. 56(4), Paper No. 116, 25 (2017)

  44. Zhang, J.: The existence and concentration of positive solutions for a nonlinear Schrödinger-Poisson system with critical growth. J. Math. Phys. 55(3), 031507 (2014). 14

    Article  MathSciNet  Google Scholar 

  45. Zhang, X., Xia, J.: Semi-classical solutions for Schrödinger-Poisson equations with a critical frequency. J. Differ. Equ. 265(5), 2121–2170 (2018)

    Article  Google Scholar 

  46. Zhao, L., Liu, H., Zhao, F.: Existence and concentration of solutions for the Schrödinger-Poisson equations with steep well potential. J. Differ. Equ. 255(1), 1–23 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the anonymous referee for his/her careful readings of our manuscript and the useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanyang Yu.

Additional information

This article is part of the section “Theory of PDEs” edited by Eduardo Teixeira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Yu, Y. Existence and concentration of solution for Schrödinger-Poisson system with local potential. Partial Differ. Equ. Appl. 2, 47 (2021). https://doi.org/10.1007/s42985-021-00105-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42985-021-00105-8

Keywords

Mathematics Subject Classification

Navigation