Skip to main content
Log in

An Enhanced RNN-LSTM Model for Fundus Image Classification to Diagnose Glaucoma

  • Original Research
  • Published:
SN Computer Science Aims and scope Submit manuscript

Abstract

In the current medical implications, one of the leading ocular diseases is Glaucoma which majorly damage the Optic Nerve Head (ONH) of the eye retina. The intraocular pressure of the eye leads to glaucoma, which may lead to complete or partial vision loss. Regular screening and early detection is the only solution to avoid further vision loss. Due to the laborious and manual procedure in diagnosis, an automatic system is needed to diagnose glaucoma. This paper presents a novel method using deep learning-based RNNLSTM classification model to develop an automatic approach to predict and classify the images to be as healthy or glaucomatous. The RNN and LSTM with dense, dropout, and batch normalization layers are used for training and testing the proposed prediction model. The RNN model is used for training the model and to overcome the problems that occur during training, the LSTM model is applied to increase the performance of the model. The proposed model achieved an accuracy of 97.4%, specificity of 97.9% and sensitivity of 97%in classifying the images. We have made use of the DRISHTI-GS database for training and testing the proposed model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Data Availability

The dataset produced and analyzed in this study can be obtained from the corresponding author upon request made in a reasonable manner.

References

  1. Weinreb RN, Bowd C, Moghimi S, Tafreshi A, Rausch S, Zangwill LM. Ophthalmic diagnostic imaging: glaucoma. In: High resolution imaging in microscopy and ophthalmology. Cham: Springer; 2019. p. 107–34. https://doi.org/10.1007/978-3-030-16638-05.

    Chapter  Google Scholar 

  2. Li Z, Jiang J, Zhou H, Zheng Q, Liu X, Chen K, Weng H, Chen W. Development of a deep learning-based image eligibility verification system for detecting and filtering out ineligible fundus images: a multicentre study. Int J Med Inform. 2021;147: 104363. https://doi.org/10.1016/j.ijmedinf.2020.104363.

    Article  Google Scholar 

  3. Septiarini A, Khairina DM, Kridalaksana AH, Hamdani H. Automatic glaucoma detection method applying a statistical approach to fundus images. Healthc Inform Res. 2018;24:53. https://doi.org/10.4258/hir.2018.24.1.53.

    Article  Google Scholar 

  4. Zilly J, Buhmann JM, Mahapatra D. Glaucoma detection using entropy sampling and ensemble learning for automatic optic cup and disc segmentation. Comput Med Imaging Graph. 2017;55:28–41. https://doi.org/10.1016/j.compmedimag.2016.07.012.

    Article  Google Scholar 

  5. Pathan S, Kumar P, Pai RM, Bhandary SV. Automated segmentation and classification of retinal features for glaucoma diagnosis. Biomed Signal Process Control. 2021;63: 102244. https://doi.org/10.1016/j.bspc.2020.102244.

    Article  Google Scholar 

  6. Bengani S, Angel Arul Jothi J, Vadivel S. Automatic segmentation of optic disc in retinal fundus images using semi-supervised deep learning. Multimedia Tools Appl. 2020;80:3443–68. https://doi.org/10.1007/s11042-020-09778-6.

    Article  Google Scholar 

  7. Thakur N, Juneja M. Survey on segmentation and classification approaches of optic cup and optic disc for diagnosis of glaucoma. Biomed Signal Process Control. 2018;42:162–89. https://doi.org/10.1016/j.bspc.2018.01.014.

    Article  Google Scholar 

  8. Chen S, Shi D, Sadiq M, Cheng X. Image denoising with generative adversarial networks and its application to cell image enhancement. IEEE Access. 2020;8:82819–31. https://doi.org/10.1109/access.2020.2988284.

    Article  Google Scholar 

  9. Abra‘moff MD, Alward WLM, Greenlee EC, Shuba L, Kim CY, Fingert JH, Kwon YH. Automated segmentation of the optic disc from stereo color photographs using physiologically plausible features. Invest Ophthalmol Vis Sci. 2007;48:1665. https://doi.org/10.1167/iovs.06-1081.

    Article  Google Scholar 

  10. Bock R, Meier J, Michelson G, Nyul LG, Hornegger J. Classifying glaucoma with image-based features from fundus photographs. Lecture notes in computer science. Berlin: Springer; 2007. p. 355–64. https://doi.org/10.1007/978-3-540-74936-336.

    Book  Google Scholar 

  11. Bock R, Meier J, Nyul LG, Hornegger J, Michelson G. ´ Glaucoma risk index: automated glaucoma detection from color fundus images. Med Image Anal. 2010;14:471–81. https://doi.org/10.1016/j.media.2009.12.006.

    Article  Google Scholar 

  12. Xu Y, Xu D, Lin S, Liu J, Cheng J, Cheung CY, Aung T, Wong TY. Sliding window and regression based cup detection in digital fundus images for glaucoma diagnosis. Lecture notes in computer science. Berlin: Springer; 2011. p. 1–8. https://doi.org/10.1007/978-3-642-23626-61.

    Book  Google Scholar 

  13. Mookiah MRK, Rajendra Acharya U, Lim CM, Petznick A, Suri JS. Data mining technique for automated diagnosis of glaucoma using higher order spectra and wavelet energy features. Knowl Based Syst. 2012;33:73–82. https://doi.org/10.1016/j.knosys.2012.02.010.

    Article  Google Scholar 

  14. Rangayyan RM, Zhu X, Ayres FJ, Ells AL. Detection of the optic nerve head in fundus images of the retina with gabor filters and phase portrait analysis. J Digit Imaging. 2010;23:438–53. https://doi.org/10.1007/s10278-009-9261-1.

    Article  Google Scholar 

  15. An G, Omodaka K, Hashimoto K, Tsuda S, Shiga Y, Takada N, Kikawa T, Yokota H, Akiba M, Nakazawa T. Glaucoma diagnosis with machine learning based on optical coherence tomography and color fundus images. J Healthc Eng. 2019;2019:1–9. https://doi.org/10.1155/2019/4061313.

    Article  Google Scholar 

  16. Salam AA, Khalil T, Akram MU, Jameel A, Basit I. Automated detection of glaucoma using structural and non structural features. Springerplus. 2016. https://doi.org/10.1186/s40064-016-3175-4.

    Article  Google Scholar 

  17. Basit A, Fraz MM. Optic disc detection and boundary extraction in retinal images. Appl Opt. 2015;54:3440. https://doi.org/10.1364/ao.54.003440.

    Article  Google Scholar 

  18. Raghavendra U, Fujita H, Bhandary SV, Gudigar A, Tan JH, Acharya UR. Deep convolution neural network for accurate diagnosis of glaucoma using digital fundus images. Inf Sci. 2018;441:41–9. https://doi.org/10.1016/j.ins.2018.01.051.

    Article  MathSciNet  Google Scholar 

  19. Prasad DK, Vibha L, Venugopal KR. Improved automatic detection of glaucoma using cup-to-disk ratio and hybrid classifiers. IJIVP. 2018;9:1901–10. https://doi.org/10.21917/ijivp.2018.0270.

    Article  Google Scholar 

  20. Kanse SS, Yadav DM. Retinal fundus image for glaucoma detection: a review and study. J Intell Syst. 2019;28:43–56. https://doi.org/10.1515/jisys-2016-0258.

    Article  Google Scholar 

  21. Al Ghamdi M, Li M, Abdel-Mottaleb M, Shousha MA. Semisupervised transfer learning for convolutional neural networks for glaucoma detection. In: ICASSP 2019—2019 IEEE international conference on acoustics, speech and signal processing (ICASSP). 2019. https://doi.org/10.1109/icassp.2019.8682915.

  22. Xu L, Luo S. A novel method for blood vessel detection from retinal images. Biomed Eng Online. 2010;9:14. https://doi.org/10.1186/1475-925x-9-14.

    Article  Google Scholar 

  23. Hagiwara Y, Koh JEW, Tan JH, Bhandary SV, Laude A, Ciaccio EJ, Tong L, Acharya UR. Computer-aided diagnosis of glaucoma using fundus images: a review. Comput Methods Programs Biomed. 2018;165:1–12. https://doi.org/10.1016/j.cmpb.2018.07.012.

    Article  Google Scholar 

  24. Vinoth Kumar B, Karpagam GR, Zhao Y. Evolutionary algorithm with memetic search capability for optic disc localization in retinal fundus images. In: Intelligent data analysis for biomedical applications. Amsterdam: Elsevier; 2019. p. 191–207. https://doi.org/10.1016/b978-0-12-815553-0.00009-4.

    Chapter  Google Scholar 

  25. Fu H, Cheng J, Xu Y, Wong DWK, Liu J, Cao X. Joint optic disc and cup segmentation based on multi-label deep network and polar transformation. IEEE Trans Med Imaging. 2018;37:1597–605. https://doi.org/10.1109/tmi.2018.2791488.

    Article  Google Scholar 

  26. Kola R. Detection of glaucomatous eye via color fundus images using fractal dimensions. 2008.

  27. Issac A, Partha Sarathi M, Dutta MK. An adaptive threshold based image processing technique for improved glaucoma detection and classification. Comput Methods Programs Biomed. 2015;122:229–44. https://doi.org/10.1016/j.cmpb.2015.08.002.

    Article  Google Scholar 

  28. Singh A, Dutta MK, ParthaSarathi M, Uher V, Burget R. Image processing based automatic diagnosis of glaucoma using wavelet features of segmented optic disc from fundus image. Comput Methods Programs Biomed. 2016;124:108–20. https://doi.org/10.1016/j.cmpb.2015.10.010.

    Article  Google Scholar 

  29. Lotankar M, Noronha K, Koti J. Detection of optic disc and cup from color retinal images for automated diagnosis of glaucoma. In: 2015 IEEE UP section conference on electrical computer and electronics (UPCON). 2015. https://doi.org/10.1109/upcon.2015.7456741.

  30. Tan N-M, Xu Y, Goh WB, Liu J. Robust multi-scale superpixel classification for optic cup localization. Comput Med Imaging Graph. 2015;40:182–93. https://doi.org/10.1016/j.compmedimag.2014.10.002.

    Article  Google Scholar 

  31. Noronha KP, Acharya UR, Nayak KP, Martis RJ, Bhandary SV. Automated classification of glaucoma stages using higher order cumulant features. Biomed Signal Process Control. 2014;10:174–83. https://doi.org/10.1016/j.bspc.2013.11.006.

    Article  Google Scholar 

  32. Rao PV, Gayathri R, Sunitha R. A novel approach for design and analysis of diabetic retinopathy glaucoma detection using cup to disk ration and ANN. Procedia Mater Sci. 2015;10:446–54. https://doi.org/10.1016/j.mspro.2015.06.080.

    Article  Google Scholar 

  33. Soorya M, Issac A, Dutta MK. An automated and robust image processing algorithm for glaucoma diagnosis from fundus images using novel blood vessel tracking and bend point detection. Int J Med Inform. 2018;110:52–70. https://doi.org/10.1016/j.ijmedinf.2017.11.015.

    Article  Google Scholar 

  34. Abbas Q. Glaucoma-deep: detection of glaucoma eye disease on retinal fundus images using deep learning. IJACSA. 2017. https://doi.org/10.14569/ijacsa.2017.080606.

    Article  Google Scholar 

  35. Diaz-Pinto A, Colomer A, Naranjo V, Morales S, Xu Y, Frangi AF. Retinal image synthesis and semi-supervised learning for glaucoma assessment. IEEE Trans Med Imaging. 2019;38:2211–8. https://doi.org/10.1109/tmi.2019.2903434.

    Article  Google Scholar 

  36. Orlando JI, Fu H, Barbosa Breda J, van Keer K, Bathula DR, DiazPinto A, Fang R, Heng P-A, Kim J, Lee J, Lee J, Li X, Liu P, Lu S, Murugesan B, Naranjo V, Phaye SSR, Shankaranarayana SM, Sikka A, Son J, van den Hengel A, Wang S, Wu J, Wu Z, Xu G, Xu Y, Yin P, Li F, Zhang X, Xu Y, Bogunovic H. REFUGE challenge: a unified framework for evaluating automated methods for glaucoma assessment from fundus photographs. Med Image Anal. 2020;59:101570. https://doi.org/10.1016/j.media.2019.101570.

    Article  Google Scholar 

  37. Agrawal V, Kori A, Alex V, Krishnamurthi G. Enhanced optic disk and cup segmentation with glaucoma screening from fundus images using position encoded CNNs. 2018. https://doi.org/10.48550/ARXIV.1809.05216.

  38. Bajwa MN, Malik MI, Siddiqui SA, Dengel A, Shafait F, Neumeier W, Ahmed S. Two-stage framework for optic disc localization and glaucoma classification in retinal fundus images using deep learning. BMC Med Inform Decis Mak. 2019. https://doi.org/10.1186/s12911-019-0842-8.

    Article  Google Scholar 

  39. Li F, Yan L, Wang Y, Shi J, Chen H, Zhang X, Jiang M, Wu Z, Zhou K. Deep learning-based automated detection of glaucomatous optic neuropathy on color fundus photographs. Graefes Arch Clin Exp Ophthalmol. 2020;258:851–67. https://doi.org/10.1007/s00417-020-04609-8.

    Article  Google Scholar 

  40. Deperlioglu O, Kose U, Gupta D, Khanna A, Giampaolo F, Fortino G. Explainable framework for Glaucoma diagnosis by image processing and convolutional neural network synergy: analysis with doctor evaluation. Futur Gener Comput Syst. 2022;129:152–69. https://doi.org/10.1016/j.future.2021.11.018.

    Article  Google Scholar 

  41. Juneja M, Thakur N, Thakur S, Uniyal A, Wani A, Jindal P. GC-NET for classification of glaucoma in the retinal fundus image. Mach Vis Appl. 2020. https://doi.org/10.1007/s00138-020-01091-4.

    Article  Google Scholar 

  42. Shalini L, Manvi SS, Gardiner B, Gowda NC. Image based classification of COVID-19 infection using ensemble of machine learning classifiers and deep learning techniques. In: 2022 International conference on data science, agents & artificial intelligence (ICDSAAI). 2022. https://doi.org/10.1109/icdsaai55433.2022.10028859.

  43. Yin M, Liu L, Gao J, Lin J, Qu S, Xu W, Liu X, Xu C, Zhu J. Deep learning for pancreatic diseases based on endoscopic ultrasound: a systematic review. Int J Med Inform. 2023;174: 105044. https://doi.org/10.1016/j.ijmedinf.2023.105044.

    Article  Google Scholar 

  44. Gowda NC, Bharathi Malakreddy A. A trust prediction mechanism in edge communications using optimized support vector regression. In: 2023 7th International conference on computing methodologies and communication (ICCMC). 2023. https://doi.org/10.1109/iccmc56507.2023.10083686.

  45. Shibata N, Tanito M, Mitsuhashi K, Fujino Y, Matsuura M, Murata H, Asaoka R. Development of a deep residual learning algorithm to screen for glaucoma from fundus photography. Sci Rep. 2018. https://doi.org/10.1038/s41598-018-33013-w.

    Article  Google Scholar 

  46. Rahul M, Ravichandra P, Yakoobi MM, Gowda NC. Deep learning-based solution for differently-abled persons in the society. In: 2023 4th International conference for emerging technology (INCET). 2023. https://doi.org/10.1109/incet57972.2023.10170230

  47. Gomez-Valverde JJ, Antón A, Fatti G, Liefers B, Herranz A, Santos A, Sanchez CI, Ledesma-Carbayo MJ. Automatic glaucoma classification using color fundus images based on convolutional neural networks and transfer learning. Biomed Opt Express. 2019;10:892. https://doi.org/10.1364/boe.10.000892.

    Article  Google Scholar 

  48. Shalini L, Manvi SS, Gowda NC, Manasa KN. Detection of phishing emails using machine learning and deep learning. In: 2022 7th International conference on communication and electronics systems (ICCES). 2022. https://doi.org/10.1109/icces54183.2022.9835846.

  49. Norouzifard M, Nemati A, GholamHosseini H, Klette R, NouriMahdavi K, Yousefi S. Automated glaucoma diagnosis using deep and transfer learning: proposal of a system for clinical testing. In: 2018 International conference on image and vision computing New Zealand (IVCNZ). 2018. https://doi.org/10.1109/ivcnz.2018.8634671.

  50. Rekha KB, Chandra Gowda N. A framework for sentiment analysis in customer product reviews using machine learning. In: 2020 International conference on smart technologies in computing, electrical and electronics (ICSTCEE). 2020. https://doi.org/10.1109/icstcee49637.2020.9276877.

  51. Patel AS, Singh V. Glaucoma detection using mask region-based convolutional neural networks. In: 2021 5th International conference on electronics, communication and aerospace technology (ICECA). 2021. https://doi.org/10.1109/iceca52323.2021.9675939.

  52. Shyamalee T, Meedeniya D. Glaucoma detection with retinal fundus images using segmentation and classification. Mach Intell Res. 2022;19:563–80. https://doi.org/10.1007/s11633-022-1354-z.

    Article  Google Scholar 

  53. Elangovan P, Nath MK. Glaucoma assessment from color fundus im14 ages using convolutional neural network. Int J Imaging Syst Technol. 2020;31:955–71. https://doi.org/10.1002/ima.22494.

    Article  Google Scholar 

  54. Sudhan MB, Sinthuja M, Pravinth Raja S, Amutharaj J, Charlyn Pushpa Latha G, Sheeba Rachel S, Anitha T, Rajendran T, Waji YA. Segmentation and classification of glaucoma using U-Net with deep learning model. J Healthc Eng. 2022;2022:1–10. https://doi.org/10.1155/2022/1601354.

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledged the SJB Institute of Technology, Bengaluru, India; Global Academy, Bengaluru, India, Vivekananda Institute of Technology, Bengaluru, India and REVA University, Bengaluru, India for supporting the research work by providing the facilities.

Funding

No funding received for this research.

Author information

Authors and Affiliations

Authors

Contributions

The collaborative efforts and contributions of all authors made this research endeavor possible.

Corresponding author

Correspondence to H. N. Veena.

Ethics declarations

Conflict of interest

No conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the topical collection “Advances in Computational Approaches for Image Processing, Wireless Networks, Cloud Applications and Network Security” guest edited by P. Raviraj, Maode Ma and Roopashree H R.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Veena, H.N., Patil, K.K., Vanajakshi, P. et al. An Enhanced RNN-LSTM Model for Fundus Image Classification to Diagnose Glaucoma. SN COMPUT. SCI. 5, 514 (2024). https://doi.org/10.1007/s42979-024-02867-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42979-024-02867-5

Keywords

Navigation