Skip to main content

Advertisement

Log in

Detection of the Optic Nerve Head in Fundus Images of the Retina with Gabor Filters and Phase Portrait Analysis

  • Published:
Journal of Digital Imaging Aims and scope Submit manuscript

Abstract

We propose a method using Gabor filters and phase portraits to automatically locate the optic nerve head (ONH) in fundus images of the retina. Because the center of the ONH is at or near the focal point of convergence of the retinal vessels, the method includes detection of the vessels using Gabor filters, detection of peaks in the node map obtained via phase portrait analysis, and an intensity-based condition. The method was tested on 40 images from the Digital Retinal Images for Vessel Extraction (DRIVE) database and 81 images from the Structured Analysis of the Retina (STARE) database. An ophthalmologist independently marked the center of the ONH for evaluation of the results. The evaluation of the results includes free-response receiver operating characteristics (FROC) and a measure of distance between the manually marked and detected centers. With the DRIVE database, the centers of the ONH were detected with an average distance of 0.36 mm (18 pixels) to the corresponding centers marked by the ophthalmologist. FROC analysis indicated a sensitivity of 100% at 2.7 false positives per image. With the STARE database, FROC analysis indicated a sensitivity of 88.9% at 4.6 false positives per image.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1.
Fig 2.
Fig 3.
Fig 4.
Fig 5.
Fig 6.
Fig 7.

References

  1. Youssif AAHAR, Ghalwash AZ, Ghoneim AASAR: Optic disc detection from normalized digital fundus images by means of a vessels’ direction matched filter. IEEE Trans Med Imag 27(1):11–18, 2008

    Article  CAS  Google Scholar 

  2. Walter T, Klein JC: Segmentation of color fundus images of the human retina: Detection of the optic disc and the vascular tree using morphological techniques. Medical Data Analysis, Lecture Notes in Computer Science, Volume 2199, Springer: Berlin, Pages 282-287, 2001

  3. Zhu X, Rangayyan RM, Ells AL: Detection of the optic disc in fundus images of the retina using the Hough transform for circles. J Digit Imaging, in press, 2009

  4. Acharya R, Tan W, Yun WL, Ng EYK, Min LC, Chee C, Gupta M, Nayak J, Suri JS: The human eye. In: Acharya R, Ng EYK, Suri JS Eds. Image Modeling of the Human Eye. Norwood: Artech House, 2008, pp. 1–35

    Google Scholar 

  5. Michaelson IC, Benezra D: Textbook of the Fundus of the Eye, 3rd edition. Edinburgh: Churchill Livingstone, 1980

    Google Scholar 

  6. Park M, Jin JS, Luo S: Locating the optic disc in retinal images. In: Proceedings of the International Conference on Computer Graphics, Imaging and Visualisation, page 5, Sydney, QLD, Australia, July, 2006. IEEE

  7. Tobin KW, Chaum E, Govindasamy VP, Karnowski TP: Detection of anatomic structures in human retinal imagery. IEEE Trans Med Imag 26(12):1729–1739, 2007

    Article  Google Scholar 

  8. Li H, Chutatape O: Automated feature extraction in color retinal images by a model based approach. IEEE Trans Biomed Eng 51(2):246–254, 2004

    Article  PubMed  Google Scholar 

  9. Fleming AD, Goatman KA, Philip S, Olson JA, Sharp PF: Automatic detection of retinal anatomy to assist diabetic retinopathy screening. Phys Med Biol 52:331–345, 2007

    Article  PubMed  Google Scholar 

  10. Early Treatment Diabetic Retinopathy Study Research Group: Grading diabetic retinopathy from stereoscopic color fundus photographs—An extension of the modified Airlie House classification (ETDRS report number 10). Ophthalmology 98:786–806, 1991

    Google Scholar 

  11. Sun H, Nathans J: The challenge of macular degeneration. Sci Am 285(4):68–75, 2001

    Article  CAS  PubMed  Google Scholar 

  12. Ells A, Holmes JM, Astle WF, Williams G, Leske DA, Fielden M, Uphill B, Jennett P, Hebert M: Telemedicine approach to screening for severe retinopathy of prematurity: A pilot study. Ophthalmology 110(11):2113–2117, 2003

    Article  PubMed  Google Scholar 

  13. Patton N, Aslam TM, MacGillivray T, Deary IJ, Dhillon B, Eikelboom RH, Yogesan K, Constable IJ: Retinal image analysis: Concepts, applications and potential. Prog Retin Eye Res 25(1):99–127, 2006

    Article  PubMed  Google Scholar 

  14. Osareh A, Mirmehd M, Thomas B, Markham R: Comparison of colour spaces for optic disc localisation in retinal images. In: Proceedings 16th International Conference on Pattern Recognition. Quebec City, Quebec, Canada, 2002, pp 743–746

  15. Hoover A, Kouznetsova V, Goldbaum M: Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. IEEE Trans Med Imag 19(3):203–210, 2000

    Article  CAS  Google Scholar 

  16. Hoover A, Goldbaum M: Locating the optic nerve in a retinal image using the fuzzy convergence of the blood vessels. IEEE Trans Med Imag 22(8):951–958, 2003

    Article  Google Scholar 

  17. Structured Analysis of the Retina, http://www.ces.clemson.edu/˜ahoover/stare/, accessed on March 24, 2008

  18. Staal J, Abràmoff MD, Niemeijer M, Viergever MA, van Ginneken B: Ridge-based vessel segmentation in color images of the retina. IEEE Trans Med Imag 23(4):501–509, 2004

    Article  Google Scholar 

  19. DRIVE: Digital Retinal Images for Vessel Extraction, http://www.isi.uu.nl/Research/Databases/DRIVE/, accessed on March 24, 2008

  20. ter Haar F: Automatic localization of the optic disc in digital colour images of the human retina. Master’s thesis, Utrecht University, Utrecht, the Netherlands, 2005

  21. Lalonde M, Beaulieu M, Gagnon L: Fast and robust optic disc detection using pyramidal decomposition and Hausdorff-based template matching. IEEE Trans Med Imag 20(11):1193–1200, 2001

    Article  CAS  Google Scholar 

  22. Barrett SF, Naess E, Molvik T: Employing the Hough transform to locate the optic disk. Biomed Sci Instrum 37:81–86, 2001

    CAS  PubMed  Google Scholar 

  23. Chrástek R, Skokan M, Kubecka L, Wolf M, Donath K, Jan J, Michelson G, Niemann H: Multimodal retinal image registration for optic disk segmentation. In: Methods of Information in Medicine, German BVM-Workshop on Medical Image Processing, volume 43. Germany: Schattauer GmbH, 2004, pp 336–342

  24. Chrástek R, Wolf M, Donath K, Niemann H, Paulus D, Hothorn T, Lausen B, Lämmer R, Mardin CY, Michelson G: Automated segmentation of the optic nerve head for diagnosis of glaucoma. Med Image Anal 9(4):297–314, 2005

    Article  PubMed  Google Scholar 

  25. Zhu X, Rangayyan RM: Detection of the optic disc in images of the retina using the Hough transform. In: Proceedings of the 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Vancouver, BC, Canada, August 20–24, 2008. IEEE, pages 3546–3549

  26. Sekhar A, Al-Nuaimy W, Nandi AK: Automated localisation of retinal optic disk using Hough transform. In: 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, ISBI 2008, 2008, pp 1577–1580

  27. Sinthanayothin C, Boyce JF, Cook HL, Williamson TH: Automated localisation of the optic disc, fovea, and retinal blood vessels from digital colour fundus images. Br J Ophthalmol 83(4):902–910, 1999

    Article  CAS  PubMed  Google Scholar 

  28. Carmona EJ, Rincon M, García-Feijoó J, Martínez de-la Casa JM: Identification of the optic nerve head with genetic algorithms. Artif Intell Med 43(3):243–259, 2008

    Article  PubMed  Google Scholar 

  29. Hussain AR: Optic nerve head segmentation using genetic active contours. In: Proceeding International Conference on Computer and Communication Engineering. Kuala Lumpur, Malaysia, 2008, IEEE, pp 783–787

  30. Foracchia M, Grisan E, Ruggeri A: Detection of optic disc in retinal images by means of a geometrical model of vessel structure. IEEE Trans Med Imag 23(10):1189–1195, 2004

    Article  CAS  Google Scholar 

  31. Kim SK, Kong HJ, Seo JM, Cho BJ, Park KH, Hwang JM, Kim DM, Chung H, Kim HC: Segmentation of optic nerve head using warping and RANSAC. In: Proceedings of the 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Lyon, France, 2007, IEEE, pp 900–903

  32. Ying H, Zhang M, Liu JC: Fractal-based automatic localization and segmentation of optic disc in retinal images. In: Proceedings of the 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Lyon, France, 2007, IEEE, pp 4139–4141

  33. Park J, Kien NT, Lee G: Optic disc detection in retinal images using tensor voting and adaptive mean-shift. In: IEEE 3rd International Conference on Intelligent Computer Communication and Processing, ICCP. Romania: Cluj-Napoca, 2007, pp 237–241

  34. Rangayyan RM, Ayres FJ, Oloumi F, Oloumi F, Eshghzadeh-Zanjani P: Detection of blood vessels in the retina with multiscale Gabor filters. J Electron Imaging 17(2):023018:1–7, 2008

    Google Scholar 

  35. Rao AR, Jain RC: Computerized flow field analysis: Oriented texture fields. IEEE Trans Pattern Anal Mach Intell 14(7):693–709, 1992

    Article  Google Scholar 

  36. Rangayyan RM, Zhu X, Ayres FJ: Detection of the optic disc in images of the retina using Gabor filters and phase portrait analysis. In: Vander Sloten J, Verdonck P, Nyssen M, Haueisen J Eds. IFMBE Proceedings 22: Proceedings of 4th European Congress for Medical and Biomedical Engineering. Belgium: Antwerp, 2008, pp 468–471

  37. Image Processing and Analysis in Java, http://rsbweb.nih.gov/ij/, accessed on September 3, 2008

  38. Gonzalez RC, Woods RE: Digital Image Processing, 2nd edition. Upper Saddle River: Prentice Hall, 2002

    Google Scholar 

  39. Soares JVB, Leandro JJG, Cesar Jr, RM, Jelinek HF, Cree MJ: Retinal vessel segmentation using the 2-D Gabor wavelet and supervised classification. IEEE Trans Med Imag 25(9):1214–1222, 2006

    Article  Google Scholar 

  40. Rangayyan RM, Ayres FJ: Gabor filters and phase portraits for the detection of architectural distortion in mammograms. Med Biol Eng Comput 44(10):883–894, 2006

    Article  PubMed  Google Scholar 

  41. Rangayyan RM: Biomedical Image Analysis, Boca Raton: CRC, 2005

    Google Scholar 

  42. Ayres FJ, Rangayyan RM: Design and performance analysis of oriented feature detectors. J Electron Imaging 16(2):023007:1–12, 2007

    Google Scholar 

  43. Manjunath BS, Ma WY: Texture features for browsing and retrieval of image data. IEEE Trans Pattern Anal Mach Intell 18(8):837–842, 1996

    Article  Google Scholar 

  44. Swanson C, Cocker KD, Parker KH, Moseley MJ, Fielder AR: Semiautomated computer analysis of vessel growth in preterm infants without and with ROP. Br J Ophthalmol 87(12):1474–1477, 2003

    Article  CAS  PubMed  Google Scholar 

  45. Ayres FJ, Rangayyan RM: Reduction of false positives in the detection of architectural distortion in mammograms by using a geometrically constrained phase portrait model. Int J Comput Assist Radiol Surg 1(6):361–369, 2007

    Article  Google Scholar 

  46. Wylie CR, Barrett LC: Advanced Engineering Mathematics, 6th edition. New York: McGraw-Hill, 1995

    Google Scholar 

  47. Ayres FJ, Rangayyan RM: Characterization of architectural distortion in mammograms. IEEE Eng Med Biol Mag 24(1):59–67, 2005

    Article  PubMed  Google Scholar 

  48. Egan JP, Greenberg GZ, Schulman AI: Operating characteristics, signal detectability, and the method of free response. J Acoust Soc Am 33(8):993–1007, 1961

    Article  Google Scholar 

  49. Edwards DC, Kupinski MA, Metz CE, Nishikawa RM: Maximum likelihood fitting of FROC curves under an initial-detection-and-candidate-analysis model. Med Phys 29:2861–2870, 2002

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rangaraj M. Rangayyan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rangayyan, R.M., Zhu, X., Ayres, F.J. et al. Detection of the Optic Nerve Head in Fundus Images of the Retina with Gabor Filters and Phase Portrait Analysis. J Digit Imaging 23, 438–453 (2010). https://doi.org/10.1007/s10278-009-9261-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10278-009-9261-1

Key words

Navigation