Skip to main content
Log in

Anomaly Detection in Smart Houses for Healthcare

Recent Advances, and Future Perspectives

  • Review Article
  • Published:
SN Computer Science Aims and scope Submit manuscript

Abstract

Nowadays, device monitoring is an activity present in various different environments. Ranging from monitoring workers in their workplaces, city traffic, surveillance in shops, to elderly at home, all that rely on effective anomaly detection in video scenes. In the context of residences, although there are many kinds of monitoring cameras and sensors, these devices usually are not able to detect health risks automatically. The traditional methods of monitoring people in a house to avoid potential health risks are expensive and, in most cases, require the healthcare professional’s physical presence. A possible alternative for this problem is using a machine learning model to detect health risks by monitoring daily activities. Although these models are capable of identifying activities that represent health risks, many of them depend on labeled data to identify and classify such events. Moreover as these events rarely occur, the sought models have to be effective to avoid needing labeled data. This paper presents a systematic review of the anomaly detection models in smart houses related to identifying health risks. A special attention was given to anomaly detection approaches that avoid using labeled data. After applying the proposed protocol in five databases, between 2009 and 2023 (June), we have identified 1185 studies have met the quality criteria. The selected papers were analyzed using an ad hoc questionnaire, and were ranked according to their relevance. The results suggest that anomaly detection is an important research area in the context of smart houses related to health risks, and bring some insights into why it is expanding in the recent years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Alaghbari KA, Saad MHM, Hussain A, Alam MR. Activities recognition, anomaly detection and next activity prediction based on neural networks in smart homes. IEEE Access. 2022;10:28219–32.

    Article  Google Scholar 

  2. Aleskerov E, Freisleben B, Rao B. Cardwatch: A neural network based database mining system for credit card fraud detection. In: Proceedings of the IEEE/IAFE 1997 computational intelligence for financial engineering (CIFEr). IEEE; 1997. p. 220–226.

  3. Ambrose AF, Paul G, Hausdorff JM. Risk factors for falls among older adults: a review of the literature. Oxford: Elsevier; 2013. p. 51–61.

    Google Scholar 

  4. Antón MÁ, Ordieres-Meré J, Saralegui U, Sun S. Non-invasive ambient intelligence in real life: dealing with noisy patterns to help older people. Sensors. 2019;19(14):3113.

    Article  Google Scholar 

  5. Arifoglu D, Bouchachia A. Activity recognition and abnormal behaviour detection with recurrent neural networks. Procedia Comput Sci. 2017;110:86–93.

    Article  Google Scholar 

  6. Arifoglu D, Bouchachia A. Detection of abnormal behaviour for dementia sufferers using convolutional neural networks. Artif Intell Med. 2019;94:88–95.

    Article  Google Scholar 

  7. Arifoglu D, Bouchachia A. Abnormal behaviour detection for dementia sufferers via transfer learning and recursive auto-encoders. In: 2019 IEEE International conference on pervasive computing and communications workshops (PerCom Workshops). IEEE; 2019. p. 529–534.

  8. Au CE, Skaff S, Clark JJ. Anomaly detection for video surveillance applications. In: 18th International conference on pattern recognition (ICPR’06), vol. 4. IEEE; 2006. p. 888–891.

  9. Auvinet E, Rougier C, Meunier J, St-Arnaud A, Rousseau J. Multiple cameras fall dataset. DIRO-Université de Montréal, Tech. Rep 2010;24:1350.

  10. Baddar SWAH, Merlo A, Migliardi M. Anomaly detection in computer networks: a state-of-the-art review. JoWUA. 2014;5(4):29–64.

    Google Scholar 

  11. Bakar U, Ghayvat H, Hasanm S, Mukhopadhyay S. Activity and anomaly detection in smart home: a survey. In: Next generation sensors and systems. Springer; 2016. p. 191–220.

  12. Bhuyan MH, Bhattacharyya DK, Kalita JK. Network anomaly detection: methods, systems and tools. Ieee Commun Surv Tutor. 2013;16(1):303–36.

    Article  Google Scholar 

  13. Casagrande FD, Tørresen J, Zouganeli E. Sensor event prediction using recurrent neural network in smart homes for older adults. In: 2018 International conference on intelligent systems (IS). IEEE; 2018. p. 662–668.

  14. Casilari E, Santoyo-Ramón JA, Cano-García JM. Umafall: a multisensor dataset for the research on automatic fall detection. Procedia Comput Sci. 2017;110:32–9.

    Article  Google Scholar 

  15. Chalapathy R, Chawla S. Deep learning for anomaly detection: a survey. 2019. arXiv preprint arXiv:1901.03407.

  16. Chalapathy R, Menon AK, Chawla S. Anomaly detection using one-class neural networks. 2018. arXiv preprint arXiv:1802.06360.

  17. Chandola V, Banerjee A, Kumar V. Anomaly detection: a survey. ACM Comput Surv (CSUR). 2009;41(3):15.

    Article  Google Scholar 

  18. Chen L, Li R, Zhang H, Tian L, Chen N. Intelligent fall detection method based on accelerometer data from a wrist-worn smart watch. Measurement. 2019;140:215–26.

    Article  Google Scholar 

  19. Chong YS, Tay YH. Abnormal event detection in videos using spatiotemporal autoencoder. In: International symposium on neural networks. Springer; 2017. p. 189–196.

  20. Cook DJ, Crandall AS, Thomas BL, Krishnan NC. Casas: a smart home in a box. Computer. 2012;46(7):62–9.

    Article  Google Scholar 

  21. Delahoz YS, Labrador MA. Survey on fall detection and fall prevention using wearable and external sensors. Sensors. 2014;14(10):19806–42.

    Article  Google Scholar 

  22. Dhiman C, Vishwakarma DK. A robust framework for abnormal human action recognition using r-transform and zernike moments in depth videos. IEEE Sens J. 2019;19(13):5195–203.

    Article  Google Scholar 

  23. Elhoseny M. Multi-object detection and tracking (modt) machine learning model for real-time video surveillance systems. Circ Syst Signal Process. 2019;1–20.

  24. Erfani SM, Rajasegarar S, Karunasekera S, Leckie C. High-dimensional and large-scale anomaly detection using a linear one-class svm with deep learning. Pattern Recogn. 2016;58:121–34.

    Article  Google Scholar 

  25. Fawcett T, Provost F. Adaptive fraud detection. Data Min Knowl Disc. 1997;1(3):291–316.

    Article  Google Scholar 

  26. Frank K, Vera Nadales MJ, Robertson P, Pfeifer T. Bayesian recognition of motion related activities with inertial sensors. In: Proceedings of the 12th ACM international conference adjunct papers on Ubiquitous computing-Adjunct. ACM; 2010. p. 445–446.

  27. Gaglio S, Re GL, Morana M. Human activity recognition process using 3-d posture data. IEEE Trans Hum Mach Syst. 2014;45(5):586–97.

    Article  Google Scholar 

  28. Galvão YM, Albuquerque VA, Fernandes BJ, Valença MJ. Anomaly detection in smart houses: monitoring elderly daily behavior for fall detecting. In: Computational intelligence (LA-CCI), 2017 IEEE Latin American cnference on. IEEE; 2017. p. 1–6.

  29. Galvão YM, Ferreira J, Albuquerque VA, Barros P, Fernandes BJ. A multimodal approach using deep learning for fall detection. Expert Syst Appl. 2021;168: 114226.

    Article  Google Scholar 

  30. Galvão YM, Portela L, Ferreira J, Barros P, Fagundes OADA, Fernandes BJ. A framework for anomaly identification applied on fall detection. IEEE Access. 2021;9:77264–74.

    Article  Google Scholar 

  31. Galvão YM, Portela L, Barros P, de Araújo Fagundes RA, Fernandes BJ. Onefall-gan: a one-class gan framework applied to fall detection. Eng Sci Technol Int J. 2022;35: 101227.

    Google Scholar 

  32. García E, Villar M, Fáñez M, Villar JR, de la Cal E, Cho SB. Towards effective detection of elderly falls with cnn-lstm neural networks. Neurocomputing. 2022;500:231–40.

    Article  Google Scholar 

  33. Garcia-Teodoro P, Diaz-Verdejo J, Maciá-Fernández G, Vázquez E. Anomaly-based network intrusion detection: techniques, systems and challenges. Comput Secur. 2009;28(1–2):18–28.

    Article  Google Scholar 

  34. Harrou F, Zerrouki N, Dairi A, Sun Y, Houacine A. Automatic human fall detection using multiple tri-axial accelerometers. In: 2021 International conference on innovation and intelligence for informatics, computing, and technologies (3ICT). IEEE; 2021;74–78.

  35. Hausdorff JM, Rios DA, Edelberg HK. Gait variability and fall risk in community-living older adults: a 1-year prospective study. Arch Phys Med Rehabil. 2001;82(8):1050–6.

    Article  Google Scholar 

  36. Howcroft J, Kofman J, Lemaire ED. Review of fall risk assessment in geriatric populations using inertial sensors. J Neuroeng Rehabil. 2013;10(1):91.

    Article  Google Scholar 

  37. Jakkula VR, Cook DJ. Using temporal relations in smart environment data for activity prediction. In: Proceedings of the 24th International conference on machine learning. 2007. p. 20–24.

  38. Jakkula V, Cook DJ, et al. Anomaly detection using temporal data mining in a smart home environment. Methods Inf Med. 2008;47(1):70–5.

    Article  Google Scholar 

  39. Jiang F, Wu Y, Katsaggelos AK. Detecting contextual anomalies of crowd motion in surveillance video. In: 2009 16th IEEE international conference on image processing (ICIP). IEEE; 2009. p. 1117–1120.

  40. Jin F, Sengupta A, Cao S. mmfall: fall detection using 4-d mmwave radar and a hybrid variational rnn autoencoder. IEEE Trans Autom Sci Eng. 2020;19(2):1245–57.

    Article  Google Scholar 

  41. Jyothsna V, Prasad VR, Prasad KM. A review of anomaly based intrusion detection systems. Int J Comput Appl. 2011;28(7):26–35.

    Google Scholar 

  42. Khan SS, Hoey J. Review of fall detection techniques: a data availability perspective. Med Eng Phys. 2017;39:12–22.

    Article  Google Scholar 

  43. Kou Y, Lu CT, Sirwongwattana S, Huang YP. Survey of fraud detection techniques. In: IEEE international conference on networking, sensing and control, vol. 2. IEEE; 2004. p. 749–754.

  44. Kwolek B, Kepski M. Human fall detection on embedded platform using depth maps and wireless accelerometer. Comput Methods Programs Biomed. 2014;117(3):489–501.

    Article  Google Scholar 

  45. Li H, Shrestha A, Heidari H, Le Kernec J, Fioranelli F. Bi-lstm network for multimodal continuous human activity recognition and fall detection. IEEE Sens J. 2019;20(3):1191–201.

    Article  Google Scholar 

  46. Liu Y, Ouyang D, Liu Y, Chen R. A novel approach based on time cluster for activity recognition of daily living in smart homes. Symmetry. 2017;9(10):212.

    Article  Google Scholar 

  47. Liu YH, Hung PC, Iqbal F, Fung BC. Automatic fall risk detection based on imbalanced data. IEEE Access. 2021;9:163594–611.

    Article  Google Scholar 

  48. Lyu L, He X, Law YW, Palaniswami M. Privacy-preserving collaborative deep learning with application to human activity recognition. In: Proceedings of the 2017 ACM on conference on information and knowledge management. ACM; 2017. p. 1219–1228.

  49. Ma J, Perkins S. Time-series novelty detection using one-class support vector machines. In: Neural networks, 2003. Proceedings of the international joint conference on, vol. 3. IEEE; 2003. p. 1741–1745.

  50. Ma X, Wang H, Xue B, Zhou M, Ji B, Li Y. Depth-based human fall detection via shape features and improved extreme learning machine. IEEE J Biomed Health Inform. 2014;18(6):1915–22.

    Article  Google Scholar 

  51. Mabrouk AB, Zagrouba E. Abnormal behavior recognition for intelligent video surveillance systems: a review. Expert Syst Appl. 2018;91:480–91.

    Article  Google Scholar 

  52. Medrano C, Igual R, Plaza I, Castro M. Detecting falls as novelties in acceleration patterns acquired with smartphones. PLoS ONE. 2014;9(4): e94811.

    Article  Google Scholar 

  53. Mehta V, Dhall A, Pal S, Khan SS. Motion and region aware adversarial learning for fall detection with thermal imaging. In: 2020 25th International conference on pattern recognition (ICPR). IEEE; 2021. p. 6321–6328.

  54. Meng L, Miao C, Leung C. Towards online and personalized daily activity recognition, habit modeling, and anomaly detection for the solitary elderly through unobtrusive sensing. Multimedia Tools Appl. 2017;76(8):10779–99.

    Article  Google Scholar 

  55. Micucci D, Mobilio M, Napoletano P. Unimib shar: a dataset for human activity recognition using acceleration data from smartphones. Appl Sci. 2017;7(10):1101.

    Article  Google Scholar 

  56. Mubashir M, Shao L, Seed L. A survey on fall detection: principles and approaches. Neurocomputing. 2013;100:144–52.

    Article  Google Scholar 

  57. Munkhdalai L, Munkhdalai T, Ryu KH. Gev-nn: a deep neural network architecture for class imbalance problem in binary classification. Knowl-Based Syst. 2020;194: 105534.

    Article  Google Scholar 

  58. Musci M, De Martini D, Blago N, Facchinetti T, Piastra M. Online fall detection using recurrent neural networks. 2018. arXiv preprint arXiv:1804.04976.

  59. Nogas J, Khan SS, Mihailidis A. Deepfall: non-invasive fall detection with deep spatio-temporal convolutional autoencoders. J Healthc Informat Res. 2020;4:50–70.

    Article  Google Scholar 

  60. Nweke HF, Teh YW, Al-Garadi MA, Alo UR. Deep learning algorithms for human activity recognition using mobile and wearable sensor networks: state of the art and research challenges. Expert Syst Appl. 2018;105:233–61.

    Article  Google Scholar 

  61. Pierleoni P, Belli A, Palma L, Pellegrini M, Pernini L, Valenti S. A high reliability wearable device for elderly fall detection. IEEE Sens J. 2015;15(8):4544–53.

    Article  Google Scholar 

  62. Rossi S, Bove L, Di Martino S, Ercolano G. A two-step framework for novelty detection in activities of daily living. In: International conference on social robotics. Springer; 2018. p. 329–339.

  63. Sakurada M, Yairi T. Anomaly detection using autoencoders with nonlinear dimensionality reduction. In: Proceedings of the MLSDA 2014 2nd workshop on machine learning for sensory data analysis. ACM; 2014. p. 4.

  64. Schmidhuber J. Deep learning in neural networks: an overview. Neural Netw. 2015;61:85–117.

    Article  Google Scholar 

  65. Schwabacher M, Oza N, Matthews B. Unsupervised anomaly detection for liquid-fueled rocket propulsion health monitoring. J Aerosp Comput Inf Commun. 2009;6(7):464–82.

    Article  Google Scholar 

  66. Simoens S, Villeneuve M, Hurst J. Tackling nurse shortages in oecd countries: Oecd health working paper number 19. Cedex, France: Directorate for Employment, Labour and Social Affairs. 2005.

  67. Singh D, Merdivan E, Psychoula I, Kropf J, Hanke S, Geist M, Holzinger A. Human activity recognition using recurrent neural networks. In: International cross-domain conference for machine learning and knowledge extraction. Springer; 2017. p. 267–274.

  68. Sodemann AA, Ross MP, Borghetti BJ. A review of anomaly detection in automated surveillance. IEEE Trans Syst Man Cybern Part C (Appl Rev). 2012;42(6):1257–72.

    Article  Google Scholar 

  69. Srivastava A, Kundu A, Sural S, Majumdar A. Credit card fraud detection using hidden Markov model. IEEE Trans Depend Secure Comput. 2008;5(1):37–48.

    Article  Google Scholar 

  70. Sucerquia A, López J, Vargas-Bonilla J. Sisfall: a fall and movement dataset. Sensors. 2017;17(1):198.

    Article  Google Scholar 

  71. Sultani W, Chen C, Shah M. Real-world anomaly detection in surveillance videos. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2018. p. 6479–6488.

  72. Tran KC, Gassi M, Nehme P, Rousseau J, Meunier J. Video surveillance for near-fall detection at home. In: 2022 IEEE 22nd international conference on bioinformatics and bioengineering (BIBE). IEEE; 2022. p. 111–116.

  73. Vadivelu S, Ganesan S, Murthy OR, Dhall A. Thermal imaging based elderly fall detection. In: Asian conference on computer vision. Springer; 2016. p. 541–553.

  74. Van Kasteren T, Englebienne G, Kröse BJ. Transferring knowledge of activity recognition across sensor networks. In: International conference on pervasive computing. Springer; 2010. p. 283–300.

  75. Vavoulas G, Pediaditis M, Chatzaki C, Spanakis EG, Tsiknakis M. The mobifall dataset: fall detection and classification with a smartphone. Int J Monit Surveill Technol Res (IJMSTR). 2014;2(1):44–56.

    Google Scholar 

  76. Vilarinho T, Farshchian B, Bajer DG, Dahl OH, Egge I, Hegdal SS, Lønes A, Slettevold JN, Weggersen SM. A combined smartphone and smartwatch fall detection system. In: 2015 IEEE international conference on computer and information technology; ubiquitous computing and communications; dependable, autonomic and secure computing; pervasive intelligence and computing. IEEE; 2015. p. 1443–1448.

  77. Wang J, Nie X, Xia Y, Wu Y, Zhu SC. Cross-view action modeling, learning and recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR). 2014.

  78. Wu R, Wang B, Wang W, Yu Y. Harvesting discriminative meta objects with deep cnn features for scene classification. In: Proceedings of the IEEE international conference on computer vision, 2015. p. 1287–1295.

  79. Xiao T, Zhang C, Zha H. Learning to detect anomalies in surveillance video. IEEE Signal Process Lett. 2015;22(9):1477–81.

    Article  Google Scholar 

  80. Xu T, Chen J, Li Z, Cai Y. Fall detection based on person detection and multi-target tracking. In: 2021 11th International conference on information technology in medicine and education (ITME). IEEE; 2021. p. 60–65.

  81. Yahaya SW, Langensiepen C, Lotfi A. Anomaly detection in activities of daily living using one-class support vector machine. In: UK workshop on computational intelligence. Springer; 2018. p. 362–371.

  82. Yahaya SW, Lotfi A, Mahmud M, Machado P, Kubota N. Gesture recognition intermediary robot for abnormality detection in human activities. In: 2019 IEEE symposium series on computational intelligence (SSCI). IEEE; 2019. p. 1415–1421.

  83. Zerkouk M, Chikhaoui B. Long short term memory based model for abnormal behavior prediction in elderly persons. In: International conference on smart homes and health telematics. Springer; 2019. p. 36–45.

  84. Zhang Z, Conly C, Athitsos V. A survey on vision-based fall detection. In: Proceedings of the 8th ACM international conference on PErvasive technologies related to assistive environments. ACM; 2015. p. 46.

  85. Zhang J, Li J, Wang W. A class-imbalanced deep learning fall detection algorithm using wearable sensors. Sensors. 2021;21(19):6511.

    Article  Google Scholar 

  86. Zhou J, Zhao Y. Hierarchical coherent anomaly fall detection low bandwidth system with combination of wearable sensors for identifying behavioral abnormalities. IEEE Access. 2020;8:137683–91.

    Article  Google Scholar 

  87. Zhu H, Chen H, Brown R. A sequence-to-sequence model-based deep learning approach for recognizing activity of daily living for senior care. J Biomed Inform. 2018;84:148–58.

    Article  Google Scholar 

Download references

Funding

This study was funded by Conselho Nacional de Desenvolvimento Científico e Tecnológico (432818/2018-9), Fundação de Amparo à Ciência e Tecnologia do Estado de Pernambuco (APQ-0321-1.03/14) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yves M. Galvão.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galvão, Y.M., Castro, L., Ferreira, J. et al. Anomaly Detection in Smart Houses for Healthcare. SN COMPUT. SCI. 5, 136 (2024). https://doi.org/10.1007/s42979-023-02480-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42979-023-02480-y

Keywords

Navigation