Skip to main content

Advertisement

Log in

Energy Packet Networks: an Annotated Bibliography

  • Survey Article
  • Published:
SN Computer Science Aims and scope Submit manuscript

Abstract

Since the beginning of the age of the digital-revolution, computer and communication systems have used massive electrical power. As a result, the usage of electrical energy by the Information and Communication Technologies (ICT) has now become a major concern in the research community, so as to find new ways to minimize this overall power consumption. The Energy Packet Network (EPN) model was thus proposed to formulate and optimize the dynamic behavior of energy consumption by the ICT-based infrastructures. In this paper, we present an annotated bibliography of work that has been done regarding the EPN model, to provide a bird’s eye view of this research. A taxonomic representation of EPNs is proposed covering wireless sensor networks, ad hoc networks, clouds, servers, and wired networks. The link between EPNs, Gelenbe Networks and Random Neural Networks is also discussed. The study concludes that the EPN model and paradigm offers a significant research and engineering design direction for the minimization and optimization of energy usage in the ICT ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Pickavet M, Vereecken W, Demeyer S, Audenaert P, Vermeulen B, Develder C, Colle D, Dhoedt B, Demeester P. Worldwide energy needs for ICT: the rise of power-aware networking. In: 2008 2nd international symposium on advanced networks and telecommunication systems. IEEE; 2008. p. 1–3.

  2. Malmodin J, Moberg A, Lund en D, Finnveden G, ovehagen NL. Greenhouse gas emissions and operational electricity use in the ICT and entertainment and media sectors. J Ind Ecol. 2010;14(5):770–90.

    Google Scholar 

  3. Berl A, Gelenbe E, Di Girolamo M, Giuliani G, De Meer H, Dang MQ, Pentikousis K. Energy-efficient cloud computing. Comput J. 2010;53(7):1045–51. https://doi.org/10.1093/comjnl/bxp080.

    Article  Google Scholar 

  4. Pernici B, Aiello M, vom Brocke J, Donnellan B, Gelenbe E, Kretsis M. What IS can do for environmental sustainability: a report from CAiSE’11 panel on green and sustainable IS. Commun Assoc Inf Syst. 2012;1:30. https://doi.org/10.17705/1CAIS.03018.

    Article  Google Scholar 

  5. Gelenbe E, Caseau Y. The impact of information technology on energy consumption and carbon emissions. Ubiquity. 2015;2015:1:1–15.

    Google Scholar 

  6. Gelenbe E. Energy packet networks: ICT based energy allocation and storage. GreeNets. Berlin: Springer; 2011. p. 186–95.

    Google Scholar 

  7. Gelenbe E. Energy packet networks: smart electricity storage to meet surges in demand. In: Proceedings of the 5th international ICST conference on simulation tools and techniques, ser. SIMUTOOLS ’12. ICST, Brussels, Belgium, Belgium: ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering); 2012. p. 1–7.

  8. Gelenbe E, Ceran ET. Energy packet networks with energy harvesting. IEEE Access. 2016;4:1321–31.

    Google Scholar 

  9. Gelenbe E. Energy packet networks: Adaptive energy management for the cloud. In: Proceedings of the 2nd international workshop on cloud computing platforms, ser. CloudCP’12. New York, NY, USA: ACM; 2012. p. 1:1–1:5.

  10. Fourneau JM, Marin A, Balsamo S. Modeling energy packets networks in the presence of failures. In: 2016 IEEE 24th international symposium on modeling, analysis and simulation of computer and telecommunication systems (MASCOTS); 2016. p. 144–153.

  11. Gelenbe E. G-networks by triggered customer movement. J Appl Probab. 1993;30(3):742–8.

    MathSciNet  MATH  Google Scholar 

  12. Gelenbe E, Stafylopatis A. Global behavior of homogeneous random neural systems. Appl Math Model. 1991;15(10):534–41.

    MATH  Google Scholar 

  13. Gelenbe E, Labed A. G-networks with multiple classes of signals and positive customers. Eur J Oper Res. 1998;108:293–305.

    MATH  Google Scholar 

  14. Gelenbe E. Random neural networks with negative and positive signals and product form solution. Neural Comput. 1989;1(4):502–10.

    Google Scholar 

  15. Gelenbe E. Learning in the recurrent random neural network. Neural Netw Adv Appl. 1992;1992:1–12.

    Google Scholar 

  16. Gelenbe E. G-networks with signals and batch removal. Probab Eng Inf Sci. 1993;7(3):335–42.

    MathSciNet  Google Scholar 

  17. Gelenbe E. G-networks by triggered customer movement. J Appl Probab. 1993;30(3):742–8. https://doi.org/10.2307/3214781.

    Article  MathSciNet  MATH  Google Scholar 

  18. Gelenbe E. Réseaux neuronaux aléatoires stables. Comptes Rend Acad Sci Sér 2 Mécanique Phys Chim Sci Univ Sci Terre. 1990;310(3):177–80.

    MathSciNet  Google Scholar 

  19. Kadioglu YM, Gelenbe E. Wireless sensor with data and energy packets. In: 2017 IEEE international conference on communications workshops (ICC Workshops); 2017. p. 564–569.

  20. Kadioglu YM, Gelenbe E. Packet transmission with k energy packets in an energy harvesting sensor. In: Proceedings of the 2nd international workshop on energy-aware simulation, ser. ENERGY-SIM’16. New York, NY, USA: ACM; 2016. p. 1:1–1:6.

  21. Abdelrahman OH, Gelenbe E. A diffusion model for energy harvesting sensor nodes. In: 2016 IEEE 24th international symposium on modeling, analysis and simulation of computer and telecommunication systems (MASCOTS). IEEE; 2016. p. 154–158.

  22. Gelenbe E, Kadioglu YM. Energy loss through standby and leakage in energy harvesting wireless sensors. In: 2015 IEEE 20th international workshop on computer aided modelling and design of communication links and networks (CAMAD). IEEE; 2015. p. 231–236.

  23. Kadioglu YM. Finite capacity energy packet networks. Probab Eng Inf Sci. 2017;31(4):477–504.

    MathSciNet  MATH  Google Scholar 

  24. Gelenbe E, Kadioglu YM. Performance of an autonomous energy harvesting wireless sensor. In: Gelenbe E, editor. Information sciences and systems 2015. Berlin: Springer; 2016. p. 35–43.

    Google Scholar 

  25. Gelenbe E. Synchronising energy harvesting and data packets in a wireless sensor. Energies. 2015;8(1):356–69.

    Google Scholar 

  26. Ceran ET, Gelenbe E. Energy packet model optimisation with approximate matrix inversion. In: Proceedings of the 2nd international workshop on energy-aware simulation, ser. ENERGY-SIM ’16. New York, NY, USA: ACM; 2016. p. 4:1–4:6.

  27. Gelenbe E, Muntz RR. Probabilistic models of computer systems–Part I (Exact Results). Acta Inf. 1976;7:35. https://doi.org/10.1007/BF00265220.

    Article  MATH  Google Scholar 

  28. Gelenbe E, Morfopoulou C. A framework for energy-aware routing in packet networks. Comput J. 2011;54(6):850–9. https://doi.org/10.1093/comjnl/bxq092.

    Article  Google Scholar 

  29. Gelenbe E. A sensor node with energy harvesting. SIGMETRICS Perform Eval Rev. 2014;42(2):37–9.

    Google Scholar 

  30. Gelenbe E, Lent R. Energy-QoS trade-offs in mobile service selection. Future Internet. 2013;5(2):128–39.

    Google Scholar 

  31. Abdelrahman OH, Gelenbe E. Time and energy in team-based search. Phys Rev E. 2013;87:032125.

    Google Scholar 

  32. Abdelrahman OH, Gelenbe E. Packet delay and energy consumption in non-homogeneous networks. Comput J. 2012;55(8):950–64.

    Google Scholar 

  33. Gelenbe E, Abdelrahman OH. Search in random media with levy flights. In: First-passage phenomena and their applications, 2014. p. 366–389.

  34. Gelenbe E. A diffusion model for packet travel time in a random multihop medium. ACM Trans Sens Netw. 2007;3(2):110–28.

    Google Scholar 

  35. Sakellari G, Morfopoulou C, Gelenbe E. Investigating the tradeoffs between power consumption and quality of service in a backbone network. Future Internet. 2013;5(2):268–81.

    Google Scholar 

  36. Gelenbe E, Lent R. Optimising server energy consumption and response time. Theor Appl Inf. 2012;24(4):257–70.

    Google Scholar 

  37. Francois F, Abdelrahman OH, Gelenbe E. Towards assessment of energy consumption and latency of lte ues during signaling storms. Information sciences and systems 2015. Berin: Springer; 2016. p. 45–55.

    Google Scholar 

  38. Sakellari G, Morfopoulou C, Mahmoodi T, Gelenbe E. Using energy criteria to admit flows in a wired network. Computer and information sciences III. Berlin: Springer; 2013. p. 63–72.

    Google Scholar 

  39. Morfopoulou C, Sakellari G, Gelenbe E. Energy-aware admission control for wired networks. Information sciences and systems 2013. Berlin: Springer; 2013. p. 117–25.

    Google Scholar 

  40. Gelenbe E, Marin A. Interconnected wireless sensors with energy harvesting. In: Analytical and stochastic modelling techniques and applications—22nd international conference, ASMTA 2015, Albena, Bulgaria. Proceedings; 2015. p. 87–99.

  41. Kadioglu YM, Gelenbe E. Product-form solution for cascade networks with intermittent energy. IEEE Syst J. 2019;13(1):918–27.

    Google Scholar 

  42. Gelenbe E, Zhang Y. Performance optimization with energy packets. IEEE Syst J; 2019 (accepted for publication).

  43. Wang L, Gelenbe E. Adaptive dispatching of tasks in the cloud. IEEE Trans Cloud Comput. 2018;6(1):33–45. https://doi.org/10.1109/TCC.2015.2474406.

    Article  Google Scholar 

  44. Gelenbe E. Adaptive management of energy packets. In: IEEE 38th annual computer software and applications conference, COMPSAC workshops 2014, Vasteras, Sweden, July, 2014. p. 1–6.

  45. Gelenbe E, Ceran ET. Central or distributed energy storage for processors with energy harvesting. In: Sustainable internet and ICT for sustainability, 2015. IEEE; 2015. p. 1–3.

  46. Gelenbe E, Zhang Y. Performance optimization with energy packets. IEEE Syst J. 2019;. https://doi.org/10.1109/JSYST.2019.2912013.

    Article  Google Scholar 

  47. Gelenbe E, Abdelrahman OH. An energy packet network model for mobile networks with energy harvesting. Nonlinear Theory Appl IEICE. 2018;9(3):322–36.

    Google Scholar 

  48. Yang J, Ulukus S. Optimal packet scheduling in an energy harvesting communication system. IEEE Trans Commun. 2012;60(1):220–30.

    Google Scholar 

  49. Zhang Y. Optimal energy distribution with energy packet networks. Probab Eng Inf Sci. 2019;2019:1–17.

    Google Scholar 

  50. Gelenbe E, Kadioglu YM. Energy life-time of wireless nodes with network attacks and mitigation. In: 2018 IEEE international conference on communications workshops (ICC Workshops). IEEE, 2018. p. 1–6.

  51. Gelenbe E, Wu F-J. Future research on cyber-physical emergency management systems. Future Internet. 2013;5(3):336–54.

    Google Scholar 

  52. Al-Hadhrami T, Saeed F, Olajide F. Power aware routing algorithms (para) in wireless mesh networks for emergency management. PLoS One. 2018;13(10):1–31 10.

    Google Scholar 

  53. Gelenbe E, Oklander B. Energy and QoS in a cognitive channel. In: European wireless 2014; 20th European wireless conference. VDE; 2014. p. 1–6.

  54. Gelenbe E, Mahmoodi T. Energy-aware routing in the cognitive packet network. Energy. 2011;2011:7–12.

    Google Scholar 

  55. Gelenbe E, Lent R. Power-aware ad hoc cognitive packet networks. Ad Hoc Netw. 2004;2(3):205–16.

    Google Scholar 

  56. Gelenbe E. Steady-state solution of probabilistic gene regulatory networks. Phys Rev E Stat Nonlinear Soft Matter Phys. 2007;76(3 Pt 1):031903 (Epub 2007 Sep 10).

    Google Scholar 

  57. Gelenbe E. Dealing with software viruses: a biological paradigm. Inf Secur Tech Rep. 2007;12(4):242–50.

    Google Scholar 

  58. Gelenbe E, Gesbert D, Gunduz D, Kulah H, Uysal-Biyikoglu E. Energy harvesting communication networks: optimization and demonstration (the e-crops project). In: 2013 24th Tyrrhenian international workshop on digital communications-green ICT (TIWDC). IEEE; 2013. p. 1–6.

  59. Gelenbe E, Gunduz D. Optimum power level for communications with interference. In: 2013 24th Tyrrhenian international workshop on digital communications-green ICT (TIWDC). IEEE; 2013. p. 1–6.

  60. Gelenbe E. Quality of information and energy provisioning. In: 2013 IEEE international conference on pervasive computing and communications workshops (PERCOM Workshops). IEEE; 2013. p. 453–457.

  61. Gelenbe E. Error and energy when communicating with spins. In: 2014 IEEE global conference on signal and information processing (GlobalSIP). IEEE; 2014. p. 784–787.

  62. Gelenbe E. Errors and power when communicating with spins. IEEE Trans Emerg Top Comput. 2015;3(4):483–8.

    Google Scholar 

  63. Gelenbe E. Agreement in spins and social networks. ACM SIGMETRICS Perform Eval Rev. 2016;44(2):15–7.

    Google Scholar 

  64. Gurakan B, Ozel O, Yang J, Ulukus S. Energy cooperation in energy harvesting communications. IEEE Trans Commun. 2013;61(12):4884–98.

    Google Scholar 

  65. Ulukus S, Yener A, Erkip E, Simeone O, Zorzi M, Grover P, Huang K. Energy harvesting wireless communications: a review of recent advances. IEEE J Sel Areas Commun. 2015;33(3):360–81.

    Google Scholar 

  66. Vazquez S, Lukic SM, Galvan E, Franquelo LG, Carrasco JM. Energy storage systems for transport and grid applications. IEEE Trans Ind Electron. 2010;57(12):3881–95.

    Google Scholar 

  67. Yin Y. Optimum energy for energy packet networks. Probab Eng Inf Sci. 2017;31(4):516–39.

    MathSciNet  MATH  Google Scholar 

  68. Takahashi R, Azuma S-i, Tashiro K, Hikihara T. Design and experimental verification of power packet generation system for power packet dispatching system. In: American control conference, 2013. IEEE; 2013. p. 4368–4373.

  69. Gelenbe E, Morfopoulou C. Power savings in packet networks via optimised routing. Mob Netw Appl. 2012;17(1):152–9.

    Google Scholar 

  70. Mahmoodi T. Energy-aware routing in the cognitive packet network. Perform Eval. 2011;68(4):338–46.

    MathSciNet  Google Scholar 

  71. Gelenbe E. Steps toward self-aware networks. Commun ACM. 2009;52(7):66–75.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Partha Pratim Ray.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ray, P.P. Energy Packet Networks: an Annotated Bibliography. SN COMPUT. SCI. 1, 6 (2020). https://doi.org/10.1007/s42979-019-0008-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42979-019-0008-x

Keywords

Navigation