Skip to main content
Log in

Characterization of Mexican wheat landraces for drought and salt stress tolerance potential for future breeding

  • Original
  • Published:
Cereal Research Communications Aims and scope Submit manuscript

Abstract

One of the several impediments to increasing wheat productivity challenge is the low genetic diversity in modern wheat. Successful breeding requires the identification of donor germplasm in genetically diverse pools highlighting the importance of selection and use of diverse genotypes in a breeding program. In this investigation, we attempted to characterize a set of Mexican wheat landraces for drought and salt stress under controlled conditions at seedling stage to identify the drought and salt-tolerant genotypes. Drought stress at 14% PEG and saline stress at 125 mM NaCl caused significant reduction in all the traits investigated, i.e., germination %, root and shoot length, root and shoot fresh weight and vigor index. Association analyses revealed a total of 71 significantly associated SNPs with different traits. In addition, the cluster analysis of the germplasm for drought and salt stress identified three sub-groups based on the first two principal components which explained 51.5% and 44.3% variation, respectively. The best accessions under drought stress were number 13, 70, 71, 83, 85, 86, 87, 129, 141 and 142 carrying 8–22 positive alleles from a total possible of 24 positive alleles of the associated SNPs. Moreover, accessions 71 and 83 were carrying 22 positive alleles in total. This group also showed a mean increase of 22.54% in all the traits as compared to the population mean. Likewise, the ten best performed accessions under salt stress were 13, 14, 20, 26, 34, 35, 128, 130, 132 and 139 that carried from 17 to 28 from a possible of 35 alleles where accession number 20 carried maximum 28 favorable alleles. The phenotypic performance of these accessions indicated a mean increase of 16.43% from the population mean. Realizing the potential of these accessions, they can be included in future breeding programs to breed drought and salt stress-tolerant cultivars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agacka-Mołdoch M, Arif MAR, Lohwasser U, Doroszewska T, Qualset CO, Börner A (2016) The inheritance of wheat grain longevity: a comparison between induced and natural ageing. J Appl Genet 57:477–481

    Article  PubMed  Google Scholar 

  • Akram S, Arif MAR, Hameed A (2020) A GBS-based GWAS analysis of adaptability and yield traits in bread wheat (Triticum aestivum L.). J Appl Genet 62:27–41

    Article  PubMed  Google Scholar 

  • Akram S, Ghaffar M, Wadood A, Shokat S, Hameed A, Waheed MQ, Arif MAR (2022) A GBS-based genome wide association study reveals the genetic basis of salinity tolerance at the seedling stage in bread wheat (Triticum aestivum L.). Front Genet 13:997901. https://doi.org/10.3389/fgene.2022.997901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Almansouri M, Kinet J-M, Lutts S (2001) Effect of salt and osmotic stresses on germination in durum wheat (Triticum durum Desf.). Plant Soil 231:243–254

    Article  CAS  Google Scholar 

  • Arif MAR, Börner A (2019) Mapping of QTL associated with seed longevity in durum wheat (Triticum durum Desf.). J Appl Genet 60:33–36

    Article  CAS  PubMed  Google Scholar 

  • Arif MAR, Nagel M, Neumann K, Kobiljski B, Lohwasser U, Börner A (2012) Genetic studies of seed longevity in hexaploid wheat using segregation and association mapping approaches. Euphytica 186:1–13

    Article  Google Scholar 

  • Arif MAR, Nagel M, Lohwasser U, Börner A (2017) Genetic architecture of seed longevity in bread wheat (Triticum aestivum L.). J Biosci 42:81–89

    Article  CAS  PubMed  Google Scholar 

  • Arif MAR, Attaria F, Shokat S, Akram S, Waheed MQ, Arif A, Börner A (2020) Mapping of QTLs associated with yield and yield related traits in durum wheat (Triticum durum Desf.) under irrigated and drought conditions. Int J Mol Sci 21:2372

    Article  PubMed  PubMed Central  Google Scholar 

  • Arif MAR, Shokat S, Plieske J, Ganal M, Lohwasser U, Chesnokov YV, Kocherina NV, Kulwal P, Kumar N, McGuire PE, Sorrells ME, Qualset CO, Börner A (2021) A SNP-based genetic dissection of versatile traits in bread wheat (Triticum aestivum L.). Plant J 160:960–976

    Article  Google Scholar 

  • Arif MAR, Arseniuk E, Börner A (2022a) Genetic variability for resistance to fungal pathogens in bread wheat. Czech J Genet Plant Breed. https://doi.org/10.17221/55/2022-CJGPB

    Article  Google Scholar 

  • Arif MAR, Agacka-Mołdoch M, Qualset CO, Börner A (2022b) Mapping of additive and epistatic QTLs linked to seed longevity in bread wheat (Triticum aestivum L.). Cereal Res Commun. https://doi.org/10.1007/s42976-021-00240-3

    Article  Google Scholar 

  • Arif MAR, Waheed MQ, Lohwasser U, Shokat S, Alqudah AM, Volkmar C, Börner A (2022c) Genetic insight into the insect resistance in bread wheat exploiting the untapped natural diversity. Front Genet 13:828905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashraf M, Harris P (2005) Abiotic stresses plant resistance through breeding and molecular approaches. CRC Press, Boca Raton, FL

    Book  Google Scholar 

  • Barbosa Neto J, de Carvalho F (2002) Genetic variability in common wheat gemplasm based on COP. Genet Mol Biol 25:211–215

    Article  Google Scholar 

  • Batool N, Ilyas N, Shahzad A, Hauser BA, Arshad M (2018) Quantitative trait loci (QTLs) mapping for salt stress tolerance in wheat at germination stage. Pak J Agric Sci 55:47–55

    Google Scholar 

  • Bayoumi TY, Eid MH, Metwali EM (2008) Application of physiological and biochemical indices as a screening technique for drought tolerance in wheat genotypes. Afr J Biotech 7:2341–2352

    CAS  Google Scholar 

  • Borrill P, Fahy B, Smith AM, Uauy C (2015) Wheat grain filling is limited by grain filling capacity rather than the duration of flag leaf photosynthesis: a case study using NAM RNAi plants. PLoS ONE 10:e0134947

    Article  PubMed  PubMed Central  Google Scholar 

  • Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635

    Article  CAS  PubMed  Google Scholar 

  • Chaurasia S, Singh AK, Kumar A, Songachan L, Yadav MC, Kumar S, Kumari J, Bansal R, Sharma PC, Singh K (2021) Genome-wide association mapping reveals key genomic regions for physiological and yield-related traits under salinity stress in wheat (Triticum aestivum L.). Genomics 113:3198–3215

    Article  CAS  PubMed  Google Scholar 

  • Chen G, Krugman T, Fahima T, Chen K, Hu Y, Röder M, Nevo E, Korol A (2010) Chromosomal regions controlling seedling drought resistance in Israeli wild barley, Hordeum spontaneum C. Koch. Genet Resour Crop Evol 57:85–99

    Article  Google Scholar 

  • Dababat A, Arif MAR, Toktay H, Atiya O, Shokat S, Gul E, Imren M, Singh S (2021) A GWAS to identify the cereal cyst nematode (Heterodera filipjevi) resistance loci in diverse wheat prebreeding lines. J Appl Genet 62:93–98

    Article  CAS  PubMed  Google Scholar 

  • Di Battista G, Eades P, Tamassia R, Tollis IG (1994) Algorithms for drawing graphs: an annotated bibliography. Comput Geom 4:235–282

    Article  Google Scholar 

  • Dib TA, Monneveux P, Araus J (1992) Adaptation à la sécheresse et notion d’idéotype chez le blé dur. II. Caractères physiologiques d’adaptation. Agronomie 12:381–393

    Article  Google Scholar 

  • Dwivedi SL, Ceccarelli S, Blair MW, Upadhyaya HD, Are AK, Ortiz R (2016) Landrace germplasm for improving yield and abiotic stress adaptation. Trends Plant Sci 21:31–42

    Article  CAS  PubMed  Google Scholar 

  • Enghiad A, Ufer D, Countryman AM, Thilmany DD (2017) An overview of global wheat market fundamentals in an era of climate concerns. Int J Agron 2017:15

    Article  Google Scholar 

  • FAO (2017) The State of Food and Agriculture 2017. ISSN 0081-4539

  • Genc Y, Oldach K, Verbyla AP, Lott G, Hassan M, Tester M, Wallwork H, McDonald GK (2010) Sodium exclusion QTL associated with improved seedling growth in bread wheat under salinity stress. Theor Appl Genet 121:877–894

    Article  CAS  PubMed  Google Scholar 

  • Gulnaz S, Zulkiffal M, Sajjad M, Ahmed J, Musa M, Abdullah M, Ahsan A, Rehman AU (2019) Identifying Pakistani wheat landraces as genetic resources for yield potential, heat tolerance and rust resistance. Int J Agric Biol 21:520–526

    Google Scholar 

  • Harlan JR (1992) Crops and Man. American Society of Agronomy. Crop Sci Soc Am Madison Wis 16:63–262

    Google Scholar 

  • Hassan R, Waheed M, Shokat S, Rehman-Arif M, Tariq R, Arif M, Arif A (2020) Estimation of genomic diversity using sequence related amplified polymorphism (SRAP) markers in a mini core collection of wheat germplasm from Pakistan. Cereal Res Commun 48:33–40

    Article  CAS  Google Scholar 

  • Hede A, Skovmand B, Reynolds M, Crossa J, Vilhelmsen A, Stølen O (1999) Evaluating genetic diversity for heat tolerance traits in Mexican wheat landraces. Genet Resour Crop Evol 46:37–45

    Article  Google Scholar 

  • Jajarmi V (2009) Effect of water stress on germination indices in seven wheat cultivar. World Acad Sci Eng Technol 49:105–106

    Google Scholar 

  • Kilian B, Dempewolf H, Guarino L, Werner P, Coyne C, Warburton ML (2021) Crop Science special issue: adapting agriculture to climate change: a walk on the wild side. Crop Sci 61:32–36

    Article  Google Scholar 

  • Li W, Zhang H, Zeng Y, Xiang L, Lei Z, Huang Q et al (2020) A salt tolerance evaluation method for sunflower (Helianthus annuus L.) at the seed germination stage. Sci Rep 10:10626–10629. https://doi.org/10.1038/s41598-020-67210-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopes MS, El-Basyoni I, Baenziger PS, Singh S, Royo C, Ozbek K, Aktas H, Ozer E, Ozdemir F, Manickavelu A (2015) Exploiting genetic diversity from landraces in wheat breeding for adaptation to climate change. J Exp Bot 66:3477–3486

    Article  CAS  PubMed  Google Scholar 

  • Nagel M, Navakode S, Scheibal V, Baum M, Nachit M, Röder M, Börner A (2014) The genetic basis of durum wheat germination and seedling growth under osmotic stress. Biol Plant 58:681–688

    Article  CAS  Google Scholar 

  • Pal N, Saini DK, Kumar S (2021) Meta-QTLs, ortho-MQTLs and candidate genes for the traits contributing to salinity stress tolerance in common wheat (Triticum aestivum L.). Phys Mol Biol Plants 27:2767–2786

    Article  CAS  Google Scholar 

  • Ray DK, Ramankutty N, Mueller ND, West PC, Foley JA (2012) Recent patterns of crop yield growth and stagnation. Nature Commun 3:1–7

    Article  CAS  Google Scholar 

  • Ray DK, Mueller ND, West PC, Foley JA (2013) Yield trends are insufficient to double global crop production by 2050. PLoS ONE 8:e66428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Royo C, Briceño-Félix GA (2011) Spanish wheat pool. In: The World Wheat Book, vol 2, pp 121–154

  • Sajjad M, Khan SH, Shahzad M (2018) Patterns of allelic diversity in spring wheat populations by SSR-markers. Cytol Genet 52:155–160

    Article  Google Scholar 

  • Saleem K, Shokat S, Waheed MQ, Arshad HMI, Arif MAR (2022) A GBS-based GWAS analysis of leaf and stripe rust resistance in diverse pre-breeding germplasm of bread wheat (Triticum aestivum L.). Plants 11:2363. https://doi.org/10.3390/plants11182363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma A, Srivastava P, Mavi G, Kaur S, Kaur J, Bala R, Singh TP, Sohu V, Chhuneja P, Bains NS (2021a) Resurrection of wheat cultivar PBW343 using marker-assisted gene pyramiding for rust resistance. Front Plant Sci 12:570408

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma S, Schulthess AW, Bassi FM, Badaeva ED, Neumann K, Graner A, Özkan H, Werner P, Knüpffer H, Kilian B (2021b) Introducing beneficial alleles from plant genetic resources into the wheat germplasm. Biol 10:982

    Article  CAS  Google Scholar 

  • Shokat S, Großkinsky DK (2019) Tackling salinity in sustainable agriculture—what developing countries may learn from approaches of the developed world. Sustainability 11:4558

    Article  CAS  Google Scholar 

  • Singh S, Vikram P, Sehgal D, Burgueño J, Sharma A, Singh SK, Sansaloni CP, Joynson R, Brabbs T, Ortiz C et al (2018) Harnessing genetic potential of wheat germplasm banks through impact-oriented-prebreeding for future food and nutritional security. Sci Rep 8:12527

    Article  PubMed  PubMed Central  Google Scholar 

  • Song J, Fan H, Zhao Y, Jia Y, Du X, Wang B (2008) Effect of salinity on germination, seedling emergence, seedling growth and ion accumulation of a euhalophyte Suaeda salsa in an intertidal zone and on saline inland. Aquat Bot 88:331–337. https://doi.org/10.1016/j.aquabot.2007.11.004

    Article  CAS  Google Scholar 

  • Taranto F, D’Agostino N, Rodriguez M, Pavan S, Minervini AP, Pecchioni N, Papa R, De Vita P (2020) Whole genome scan reveals molecular signatures of divergence and selection related to important traits in durum wheat germplasm. Front Genet 11:217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verslues PE, Ober ES, Sharp RE (1998) Root growth and oxygen relations at low water potentials. Impact of oxygen availability in polyethylene glycol solutions. Plant Physiol 116:1403–1412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vikram P, Franco J, Burgueño-Ferreira J, Li H, Sehgal D, Saint Pierre C, Ortiz C, Sneller C, Tattaris M, Guzman C (2016) Unlocking the genetic diversity of Creole wheats. Sci Rep 6:23092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Y, Cosgrove DJ (2000) Adaptation of roots to low water potentials by changes in cell wall extensibility and cell wall proteins. J Exp Bot 51:1543–1553

    Article  CAS  PubMed  Google Scholar 

  • Xu Y-F, An D-G, Liu D-C, Zhang A-M, Xu H-X, Li B (2012) Mapping QTLs with epistatic effects and QTL× treatment interactions for salt tolerance at seedling stage of wheat. Euphytica 186:233–245

    Article  Google Scholar 

  • Xu Y, Li S, Li L, Zhang X, Xu H, An D (2013) Mapping QTL s for salt tolerance with additive, epistatic and QTL× treatment interaction effects at seedling stage in wheat. Plant Breed 132:276–283

    Article  CAS  Google Scholar 

  • Zhu J, Kaeppler SM, Lynch JP (2005) Mapping of QTLs for lateral root branching and length in maize (Zea mays L.) under differential phosphorus supply. Theor Appl Genet 111:688–695

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the adhoc project, “Transforming India’s Green Revolution by Research and Empowerment for Sustainable food supplies (TIGR2ESS)” funded by United Kingdom through UK Research & Innovation (UKRI), CGRF (BBSRC), Grant No: BB/P027970/1 for partial financial support for the study.

Author information

Authors and Affiliations

Authors

Contributions

AS, MARA and SS conceived the idea; AS, SK and RSS performed the original experiments and provided the datasets; MARA performed the analysis and carried out the visualization and wrote the manuscript; SS, SS and AS reviewed the manuscript by providing inputs to improve the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Achla Sharma or Mian Abdur Rehman Arif.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with animals or humans performed by any of the authors.

Additional information

Communicated by Svetlana Misheva.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 52 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suhalia, A., Sharma, A., Kaur, S. et al. Characterization of Mexican wheat landraces for drought and salt stress tolerance potential for future breeding. CEREAL RESEARCH COMMUNICATIONS 51, 703–714 (2023). https://doi.org/10.1007/s42976-022-00326-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42976-022-00326-6

Keywords

Navigation