Skip to main content

Variation among individuals of Citrullus colocynthis from a desert population in morphological, genetic, and germination attributes

  • Research Article
  • Published:
Tropical Ecology Aims and scope Submit manuscript

Abstract

Variations in fruit size, color, and stripe pattern on fruit rinds have been noticed among individuals within Citrullus colocynthis (Cucurbitaceae) populations in the hyper-arid deserts of the UAE. The present study aimed at assessing variations in fruit and seed characters, germination behavior, and genetic diversity among 12 individuals (hereafter referred accessions) collected from one population. Results showed that the accessions differed in seed dormancy level and response to light and temperature of incubation. The overall germination ranged between 18.5% in accession number 9 and 56.6% for accession number 2. At lower temperatures (15/25 °C), little germination occurred in darkness but not in the light. Germination was significantly greater and faster (germination rate index was higher) at higher temperatures (25/35 °C) than moderate (20/30 °C) and lower temperatures. Germination was greater in light than darkness in almost all accessions at higher temperatures but not at moderate temperatures. Random amplified polymorphic DNA (RAPD) analysis showed polymorphism varied between 90 and 100%, with polymorphic information content values ranged from 0.28 to 0.37 with an average of 0.33. Few individuals showed high genetic similarities, while most of them had similarity coefficients less than 0.5. There were moderate to weak relationships between genetic similarities and germination behavior of the different accessions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Al-Ansari F, Ksiksi T (2016) A quantitative assessment of germination parameters: the case of Crotalaria persica and Tephrosia apollinea. Open J Ecol 9:1

    Article  Google Scholar 

  • Assis JDA, de Queiroz MA, de Araujo SC, Bandel G, Martins PS (2000) Implications of the introgression between Citrullus colocynthis and C. lanatus characters in the taxonomy, evolutionary dynamics and breeding of watermelon. Plant Genet Resour Newsl 121:15–19

    Google Scholar 

  • Badr A, Kamel M, Zaki H (2018) Genetic diversity of Colocynth (Citrullus colocynthis Schrader) populations in the Eastern Desert of Egypt as revealed by morphological variation and ISSR polymorphism. Feddes Repert 129:173–184

    Article  Google Scholar 

  • Baskin JM, Baskin CC (2014) What kind of seed dormancy might palms have? Seed Sci Res 24:17

    Article  Google Scholar 

  • Bewley JD (1997) Seed germination and dormancy. Plant Cell 9:1055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biles C, Martyn R, Wilson H (1989) Isozymes and general proteins from various watermelon cultivars and tissue types. Hort Sci 24:810–812

    CAS  Google Scholar 

  • Böer B (1997) An introduction to the climate of the United Arab Emirates. J Arid Environ 35:3–16

    Article  Google Scholar 

  • Botha F, Small J, Grobbelaar N (1982) Seed germination in Citrullus lanatus. Part 2. The involvement of phytochrome and ethylene in controlling light sensitivity. S Afr J Bot 1:131–133

    Article  Google Scholar 

  • Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314–331

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brozynska M, Furtado A, Henry RJ (2016) Genomics of crop wild relatives: expanding the gene pool for crop improvement. Plant Biotechnol J 14:1070–1085

    Article  CAS  PubMed  Google Scholar 

  • Che K-P, Liang C-Y, Wang Y-G, Jin D-M, Wang B, Xu Y, Kang G-B, Zhang H-Y (2003) Genetic assessment of watermelon germplasm using the AFLP technique. Hort Sci 38:81–84

    CAS  Google Scholar 

  • Chomicki G, Schaefer H, Renner SS (2020) Origin and domestication of Cucurbitaceae crops: insights from phylogenies, genomics and archaeology. New Phytol 226:1240–1255

    Article  PubMed  Google Scholar 

  • Dane F, Lang P (2004) Sequence variation at cpDNA regions of watermelon and related wild species: implications for the evolution of Citrullus haplotypes. Am J Bot 91:1922–1929

    Article  CAS  PubMed  Google Scholar 

  • Dane F, Liu J (2007) Diversity and origin of cultivated and citron type watermelon (Citrullus lanatus). Genet Resour Crop Evol 54:1255–1265

    Article  CAS  Google Scholar 

  • Dane F, Liu J, Zhang C (2007) Phylogeography of the bitter apple, Citrullus colocynthis. Genet Resour Crop Evol 54:327–336

    Article  Google Scholar 

  • Duval JR, NeSmith DS (1998) Influence of mechanical scarification on emergence and seedcoat adherence of genesis’ triploid watermelon. Hort Sci 33:597

    Google Scholar 

  • Eisenstadt FA, Mancinelli AL (1974) Phytochrome and seed germination: VI. Phytochrome and temperature interaction in the control of cucumber seed germination. Plant Physiol 53:114–117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Keblawy A (2017a) Germination response to light and temperature in eight annual grasses from disturbed and natural habitats of an arid Arabian desert. J Arid Environ 147:17–24

    Article  Google Scholar 

  • El-Keblawy A (2017b) Light and temperature requirements during germination of potential perennial grasses for rehabilitation of degraded sandy Arabian deserts. Land Degrad Dev 28:1687–1695

    Article  Google Scholar 

  • El-Keblawy A, Shabana HA, Navarro T, Soliman S (2017) Effect of maturation time on dormancy and germination of Citrullus colocynthis (Cucurbitaceae) seeds from the Arabian hyper-arid deserts. BMC Plant Biol 17:263

    Article  PubMed  PubMed Central  Google Scholar 

  • El-Keblawy A, Soliman S, Al-Khoury R, Ghauri A, Al Rammah H, Hussain SE, Rashid S, Manzoor Z (2019) Effect of maturation conditions on light and temperature requirements during seed germination of Citrullus colocynthis from the Arabian Desert. Plant Biol 21:292–299

    Article  CAS  PubMed  Google Scholar 

  • Fulks B, Scheerens JC, Bemis W (1979) Natural hybridization of two Citrullus species. J Hered 70:214–215

    Article  Google Scholar 

  • Gu X-Y, Liu T, Feng J, Suttle JC, Gibbons J (2010) The qSD12 underlying gene promotes abscisic acid accumulation in early developing seeds to induce primary dormancy in rice. Plant Mol Biol 73:97–104

    Article  CAS  PubMed  Google Scholar 

  • Hassell RL, Dufault RJ, Phillips TL (2001) Influence of temperature gradients on triploid and diploid watermelon seed germination. Hort Technol 11:570–574

    Article  Google Scholar 

  • Herrington M, Brown P, Carr A (1986) Introgression as a source of bitterness in watermelon. Hort Sci 21:1237–1238

    Google Scholar 

  • Jarret R, Newman M (2000) Phylogenetic relationships among species of Citrullus and the placement of C. rehmii De Winter as determined by internal transcribed spacer (ITS) sequence heterogeneity. Genet Resour Crop Evol 47:215–222

    Article  Google Scholar 

  • Jarret R, Merrick L, Holms T, Evans J, Aradhya M (1997) Simple sequence repeats in watermelon (Citrullus lanatus (Thunb.) Matsum. & Nakai). Genome 40:433–441

    Article  CAS  PubMed  Google Scholar 

  • Koller D, Poljakoff-Mayber A, Berg A, Diskin T (1963) Germination-regulating mechanisms in Citrullus colocynthis. Am J Bot 50:597–603

    Article  Google Scholar 

  • Lee S, Shin JS, Park K, Hong Y (1996) Detection of genetic diversity using RAPD-PCR and sugar analysis in watermelon [Citrullus lanantus (Thunb.) Mansf.] germplasm. Theor Appl Genet 92:719–725

    Article  CAS  PubMed  Google Scholar 

  • Levi A, Thomas CE (2005) Polymorphisms among chloroplast and mitochondrial genomes of Citrullus species and subspecies. Genet Resour Crop Evol 52:609–617

    Article  CAS  Google Scholar 

  • Levi A, Thomas CE, Keinath AP, Wehner TC (2001) Genetic diversity among watermelon (Citrullus lanatus and Citrullus colocynthis) accessions. Genet Resour Crop Evol 48:559–566

    Article  Google Scholar 

  • Levi A, Thomas CE, Newman M, Reddy O, Zhang X, Xu Y (2004) ISSR and AFLP markers differ among American watermelon cultivars with limited genetic diversity. J Am Soc Hortic Sci 129:553–558

    Article  CAS  Google Scholar 

  • Li Q-F, Sun SS, Yuan D-Y, Yu H-X, Gu M-H, Liu Q-Q (2010) Validation of candidate reference genes for the accurate normalization of real-time quantitative RT-PCR data in rice during seed development. Plant Mol Biol Rep 28:49–57

    Article  CAS  Google Scholar 

  • Loy J, Evensen KB (1979) Phytochrome regulation of seed germination in a dwarf strain of watermelon. J Am Soc Hortic Sci 104:496–499

    Article  CAS  Google Scholar 

  • Mammadov J, Buyyarapu R, Guttikonda SK, Parliament K, Abdurakhmonov IY, Kumpatla SP (2018) Wild relatives of maize, rice, cotton, and soybean: treasure troves for tolerance to biotic and abiotic stresses. Front Plant Sci 9:886

    Article  PubMed  PubMed Central  Google Scholar 

  • McCreight JD, Staub JE, Wehner TC, Dhillon NP (2013) Gone global: familiar and exotic cucurbits have Asian origins. Hort Sci 48:1078–1089

    Google Scholar 

  • Mujaju C, Sehic J, Werlemark G, Garkava-Gustavsson L, Fatih M, Nybom H (2010) Genetic diversity in watermelon (Citrullus lanatus) landraces from Zimbabwe revealed by RAPD and SSR markers. Hereditas 147:142–153

    Article  CAS  PubMed  Google Scholar 

  • Nakamura S, Okasako Y, Yamada E (1955) Effect of light on the germination of vegetable seeds. J Jpn Soc Hortic Sci 24:17–28

    Article  Google Scholar 

  • Navot N, Zamir D (1987) Isozyme and seed protein phylogeny of the genus Citrullus (Cucurbitaceae). Plant Syst Evol 156:61–67

    Article  Google Scholar 

  • Nerson H (2007) Seed production and germinability of cucurbit crops. Seed Sci Biotechnol 1:1–10

    Google Scholar 

  • Nerson H, Paris H, Karchi Z, Sachs M (1985) Seed treatments for improved germination of tetraploid watermelon. Hort Sci 20:897–899

    CAS  Google Scholar 

  • Noronha A, Vicente M, Felippe G (1978) Photocontrol of germination of Cucumis anguria L. Biol Plant 20:281–286

    Article  Google Scholar 

  • Osman AK, Al-Ghamdi F, Bawadekji A (2014) Floristic diversity and vegetation analysis of Wadi Arar: a typical desert Wadi of the Northern Border region of Saudi Arabia. Saudi J Biol Sci 21:554–565

    Article  PubMed  PubMed Central  Google Scholar 

  • Phat P, Sheikh S, Lim JH, Kim TB, Seong MH, Chon HG, Shin YK, Song YJ, Noh J (2015) Enhancement of seed germination and uniformity in triploid watermelon (Citrullus lanatus (Thunb.) Matsum. and Nakai). Hortic Sci Technol 33:932–940

    CAS  Google Scholar 

  • Rohlf F (2000) NTSYS-pc numerical taxonomy and multivariate analysis system, version 2.1. Exeter Publications, New York

    Google Scholar 

  • Saberi M, Shahriari A, Tarnian F, Noori S (2011) Comparison the effect of different treatments for breaking seed dormancy of Citrullus colocynthis. J Agric Sci 3:62

    Google Scholar 

  • Sachs M (1977) Priming of watermellon seeds for low temperature germination. J Am Soc Hortic Sci 102:175–178

    Article  CAS  Google Scholar 

  • Sain R, Joshi P, Sastry ED (2002) Cytogenetic analysis of interspecific hybrids in genus Citrullus (Cucurbitaceae). Euphytica 128:205–210

    Article  CAS  Google Scholar 

  • Singh A (1978) Cytogenetics of semi-arid plants. III. A natural interspecific hybrid of Cucurbitaceae (Citrullus colocynthis Schrad* C. vulgaris Schrad). Cytologia 43:569–574

    Article  Google Scholar 

  • Thanos CA (1984) Phytochrome-mediated accumulation of free amino acids in radicles of germinating watermelon seeds. Physiol Plant 60:422–426

    Article  CAS  Google Scholar 

  • Thanos CA, Georghiou K, Kadis C, Pantazi C (1992) Cistaceae: a plant family with hard seeds. Isr J Plant Sci 41:251–263

    Google Scholar 

  • Turaki AA, Ahmad B, Magaji UF, Abdulrazak UK, Yusuf BA, Hamza AB (2017) Optimised cetyltrimethylammonium bromide (CTAB) DNA extraction method of plant leaf with high polysaccharide and polyphenolic compounds for downstream reliable molecular analyses. Afr J Biotechnol 16:1354–1365

    Article  CAS  Google Scholar 

  • Vågen IM, Moe R, Ronglan E (2003) Diurnal temperature alternations (DIF/drop) affect chlorophyll content and chlorophyll a/chlorophyll b ratio in Melissa officinalis L. and Ocimum basilicum L., but not in Viola× wittrockiana Gams. Sci Hortic 97:153–162

    Article  Google Scholar 

  • Verma KS, Ul Haq S, Kachhwaha S, Kothari S (2017) RAPD and ISSR marker assessment of genetic diversity in Citrullus colocynthis (L.) Schrad: a unique source of germplasm highly adapted to drought and high-temperature stress. 3 Biotech 7:1–24

    Article  Google Scholar 

  • Wang Z, Hu H, Goertzen LR, McElroy JS, Dane F (2014) Analysis of the Citrullus colocynthis transcriptome during water deficit stress. PLoS One 9:e104657

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang M, Li W, Fang C, Xu F, Liu Y, Wang Z, Yang R, Zhang M, Liu S, Lu S (2018) Parallel selection on a dormancy gene during domestication of crops from multiple families. Nat Genet 50:1435–1441

    Article  CAS  PubMed  Google Scholar 

  • Wasylikowa K, van der Veen M (2004) An archaeobotanical contribution to the history of watermelon, Citrullus lanatus (Thunb.) Matsum. & Nakai (syn. C. vulgaris Schrad.). Veg Hist Archaeobot 13:213–217

    Article  Google Scholar 

  • Wilcox GE, Pfeiffer CL (1990) Temperature effect on seed germination, seedling root development and growth of several vegetables. J Plant Nutr 13:1393–1403

    Article  Google Scholar 

  • Yaniv Z, Mancinelli AL, Smith P (1967) Phytochrome and seed germination. III. Action of prolonged far red irradiation on the germination of tomato and cucumber seeds. Plant Physiol 42:1479–1482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zamir D, Navot N, Rudich J (1984) Enzyme polymorphism in Citrullus lanatus and C. colocynthis in Israel and Sinai. Plant Syst Evol 146:163–170

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Attiat Elnaggar, Alexandria University, Egypt, and Mr. Francois Tsombou, Universidad de Málaga, Spain, for their help in the germination experiment. This work was supported by the College of Graduate Studies, University of Sharjah, that funded grant for Shaimaa Al-Nablsi and University of Sharjah Research Office that funded the Environmental and Chemical Biology Research Group (program code 1702145053-P).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali El-Keblawy.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1656 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Nablsi, S., El-Keblawy, A., Mosa, K.A. et al. Variation among individuals of Citrullus colocynthis from a desert population in morphological, genetic, and germination attributes. Trop Ecol 63, 171–182 (2022). https://doi.org/10.1007/s42965-021-00190-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42965-021-00190-1

Keywords

Navigation