Skip to main content
Log in

Moisture Damage Resistance of Hot Mix Asphalt made with Recycled Rubber Materials and Determining the Optimal Percentage with an Economic Approach

  • Original Research Paper
  • Published:
International Journal of Pavement Research and Technology Aims and scope Submit manuscript

Abstract

Moisture susceptibility is one of the most important distresses that affects the life of the flexible pavement. Various methods, such as adding the appropriate additive, have been proposed to improve the asphalt mix properties. Some of these additives have environmental, and some have economic characteristics. In this study, three additives were used to study the moisture susceptibility and rutting of Hot Mix Asphalt (HMA), including rubber powder (RP), Tire Reclaim (TR10), and Butyl Reclaimed (BR120). For this purpose, the Marshall Stability test, Marshall Ratio (for determining the rutting), and Indirect Tensile Strength (ITS) were performed on the samples. Also, the economic analysis of the additive's effects on HMA was evaluated. The results of the Marshall test showed that adding all three additives increased the Marshall Stability and the Marshall ratio. As a result, adding TR10 and BR120 improved the Marshall ratio or rutting more than rubber powder. Indirect tensile strength test results also showed that the addition of rubber powder and TR10 led to improved HMA performance against moisture susceptibility. However, the use of BR120 as an additive reduced HMA moisture susceptibility. On the other hand, the economic analysis showed that adding 20% of rubber powder and TR10 would make the project much more economical. Further, adding BR120 to the asphalt mix provided economic benefits in every percentage. Consequently, based on the presented arguments, adding 20% of rubber powder and TR10 for technical and economic reasons leads to the best result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Vamegh, M., Ameri, M., & Naeni, S. F. C. (2020). Experimental investigation of effect of PP/SBR polymer blends on the moisture resistance and rutting performance of asphalt mixtures. Construction and Building Materials, 253, 119197.

    Article  Google Scholar 

  2. Gao, J., Liu, P., Wu, Y., Xu, Y., & Lu, H. (2021). Moisture damage of asphalt mixture and its evaluation under the long-term soaked duration. International Journal of Pavement Research and Technology, 14(5), 607–614.

    Article  Google Scholar 

  3. Jameel, M. S., Abubakar, H. M., Raza, A., Iqbal, S., & Khalid, R. A. (2021). Effect of Aging on Adhesion and Moisture damage of asphalt: a perspective of rolling bottle and bitumen bond strength test. International Journal of Pavement Research and Technology. https://doi.org/10.1007/s42947-021-00021-5

    Article  Google Scholar 

  4. Poovaneshvaran, S., Zheng, L. W., Hasan, M. R. M., Yang, X., & Diab, A. (2021). Workability, compactibility and engineering properties of rubber-modified asphalt mixtures prepared via wet process. International Journal of Pavement Research and Technology, 14(5), 560–569.

    Article  Google Scholar 

  5. Cho, D. W., & Kim, K. (2010). The mechanisms of moisture damage in asphalt pavement by applying chemistry aspects. KSCE Journal of Civil Engineering, 14(3), 333–341.

    Article  Google Scholar 

  6. Kim, Y. R., Lutif, J. S., Bhasin, A., & Little, D. N. (2008). Evaluation of moisture damage mechanisms and effects of hydrated lime in asphalt mixtures through measurements of mixture component properties and performance testing. Journal of Materials in Civil Engineering, 20(10), 659–667.

    Article  Google Scholar 

  7. Ghabchi, R., Singh, D., & Zaman, M. (2014). Evaluation of moisture susceptibility of asphalt mixes containing RAP and different types of aggregates and asphalt binders using the surface free energy method. Construction and Building Materials, 73, 479–489.

    Article  Google Scholar 

  8. Khodaii, A., Haghshenas, H. F., & Tehrani, H. K. (2012). Effect of grading and lime content on HMA stripping using statistical methodology. Construction and Building Materials, 34, 131–135.

    Article  Google Scholar 

  9. Sivilevičius, H., & Vislavičius, K. (2008). Stochastic simulation of the influence of variation of mineral material grading and dose weight on the homogeneity of hot-mix asphalt. Construction and Building Materials, 22(9), 2007–2014.

    Article  Google Scholar 

  10. Zahedi, M., Barati, M., & Zarei, M. (2017). Studying the technical effect of carbon nanotube on asphalt mixture with solid granulation. Journal of Civil Engineering and Structures, 1(1), 2017.

    Google Scholar 

  11. Mirbaha, B., Abdi, A., Zarei, M., Zarei, A., & Akbarinia, F. (2017). Experimental determination of the optimum percentage of asphalt mixtures reinforced with Nano-carbon black and polyester fiber industries. Engineering Solid Mechanics, 5(4), 285–292.

    Article  Google Scholar 

  12. Zahedi, M., & Zarei, M. (2016). Studying the simultaneous effect of black Nanocarbon and Polyester fibers with high stability on mechanical properties of asphalt mixture. The Turkish Online Journal of Design Art and Communication, 6, 188–195.

    Article  Google Scholar 

  13. Zahedi, M., Zarei, A., Zarei, M., & Janmohammadi, O. (2020). Experimental determination of the optimum percentage of asphalt mixtures reinforced with Lignin. SN Applied Sciences, 2(2), 258.

    Article  Google Scholar 

  14. Janmohammadi, O., Safa, E., Zarei, M., & Zarei, A. (2020). Simultaneous effects of ethyl vinyl acetate (EVA) and glass fiber on the properties of the hot mix asphalt. SN Applied Sciences, 2, 1168.

    Article  Google Scholar 

  15. Zarei, M., Mirbaha, B., Akbarinia, F., Rahmani, Z., Zahedi, M., & Zarei, A. (2020). Application of concordance analysis method (CA) for optimal selection of asphalt mixtures reinforced with rubber powder and carbon fiber. Electronic Journal of Structural Engineering, 20(1), 53–62.

    Google Scholar 

  16. Zarei, M., Rahmani, Z., Zahedi, M., & Nasrollahi, M. (2020). Technical, economic, and environmental investigation of the effects of rubber powder additive on asphalt mixtures. Journal of Transportation Engineering, Part B: Pavements, 146(1), 04019039.

    Google Scholar 

  17. Zahedi, M., Barati, M., & Zarei, M. (2017). Evaluation the effect of carbon nanotube on the rheological and mechanical properties of bitumen and Hot Mix Asphalt (HMA). Electronic Journal of Structural Engineering, 17(1), 76–84.

    Google Scholar 

  18. Abdi, A., Zarei, M., Mahdinazar, M., & Akbarinia, F. (2021). Economic analysis based on the unit weight of hot mix asphalt. Engineering Solid Mechanics, 9(1), 1–10.

    Google Scholar 

  19. Zahedi, M., Zarei, M., Manesh, H. A., Kalam, A. S., & Ghadiri, M. (2017). Technical-economic studies about polyester fibers with high strength on asphalt mixtures with solid granulation. Journal of Civil Engineering and Urbanism, 7(2), 30–35.

    Google Scholar 

  20. Zarei, M., Akbarinia, F., Rahmani, Z., Zahedi, M., & Zarei, A. (2020). Economical and technical study on the effect of carbon fiber with high strength on hot mix asphalt (HMA). Electronic Journal of Structural Engineering, 20(1), 6–12.

    Google Scholar 

  21. Zarei, M., & Zahedi, M. (2016). Effect of nano-carbon black on the mechanical properties of asphalt mixtures. Journal of Fundamental and Applied Sciences, 8(3S), 2996–3008.

    Google Scholar 

  22. Xiao, F., Su, N., Yao, S., Amirkhanian, S., & Wang, J. (2019). Performance grades, environmental and economic investigations of reclaimed asphalt pavement materials. Journal of Cleaner Production, 211, 1299–1312.

    Article  Google Scholar 

  23. Zarei, A., Zarei, M., & Janmohammadi, O. (2019). Evaluation of the effect of lignin and glass fiber on the technical properties of asphalt mixtures. Arabian Journal for Science and Engineering, 44(5), 4085–4094.

    Article  Google Scholar 

  24. Zarei, M., Zarei, A., & Zahedi, M. (2017). Comparison of the optimum percentage of asphalt mixture reinforced with Nano-carbon black and polyester fiber with high strength. Journal of Civil Engineering and Structures, 1(1), 13–29.

    Google Scholar 

  25. Presti, D. L., Fecarotti, C., Clare, A. T., & Airey, G. (2014). Toward more realistic viscosity measurements of tyre rubber–bitumen blends. Construction and Building Materials, 67, 270–278.

    Article  Google Scholar 

  26. Amini, A., Goli, A., & Ziari, H. (2017). The influence of nanoclay on the performance properties and moisture susceptibility of rubberized asphalt mixture. Petroleum Science and Technology, 35(2), 175–182.

    Article  Google Scholar 

  27. Palit, S. K., Reddy, K. S., & Pandey, B. B. (2004). Laboratory evaluation of crumb rubber modified asphalt mixes. Journal of Materials in Civil Engineering, 16(1), 45–53.

    Article  Google Scholar 

  28. Lee, S. J., Kim, H., Akisetty, C. K., & Amirkhanian, S. N. (2008). Laboratory characterization of recycled crumb-rubber-modified asphalt mixture after extended aging. Canadian Journal of Civil Engineering, 35(11), 1308–1317.

    Article  Google Scholar 

  29. Liu, J. H. (2012). Laboratory Investigation of Moisture Damage in Asphalt Rubber Hot Mixes Using Warm Mix Technology. In Advanced Materials Research (Vol. 598, pp. 438–443). Trans Tech Publications Ltd‏.

  30. Nazirizad, M., Kavussi, A., & Abdi, A. (2015). Evaluation of the effects of anti-stripping agents on the performance of asphalt mixtures. Construction and Building Materials, 84, 348–353.

    Article  Google Scholar 

  31. Pérez, I., & Pasandín, A. R. (2017). Moisture damage resistance of hot-mix asphalt made with recycled concrete aggregates and crumb rubber. Journal of Cleaner Production, 165, 405–414.

    Article  Google Scholar 

  32. Fakhri, M., Javadi, S., Sedghi, R., Arzjani, D., & Zarrinpour, Y. (2019). Effects of deicing agents on moisture susceptibility of the WMA containing recycled crumb rubber. Construction and Building Materials, 227, 116581.

    Article  Google Scholar 

  33. Vázquez, V. F., Luong, J., Bueno, M., Terán, F., & Paje, S. E. (2016). Assessment of an action against environmental noise: Acoustic durability of a pavement surface with crumb rubber. Science of the Total Environment, 542, 223–230.

    Article  Google Scholar 

  34. Partl, M. N., Pasquini, E., Canestrari, F., & Virgili, A. (2010). Analysis of water and thermal sensitivity of open graded asphalt rubber mixtures. Construction and Building Materials, 24(3), 283–291.

    Article  Google Scholar 

  35. Xiao, F., & Amirkhanian, S. N. (2009). Laboratory investigation of moisture damage in rubberised asphalt mixtures containing reclaimed asphalt pavement. International Journal of Pavement Engineering, 10(5), 319–328.

    Article  Google Scholar 

  36. Majidzadeh, K., & Brovold, F. N. (1996) Brovold effect of water on bitumen-aggregate mixtures. https://trid.trb.org/view/97670.

  37. Tahami, S. A., Mirhosseini, A. F., Dessouky, S., Mork, H., & Kavussi, A. (2019). The use of high content of fine crumb rubber in asphalt mixes using dry process. Construction and Building Materials, 222, 643–653.

    Article  Google Scholar 

  38. Arabani, M., Tahami, S. A., & Hamedi, G. H. (2018). Performance evaluation of dry process crumb rubber-modified asphalt mixtures with nanomaterial. Road Materials and Pavement Design, 19(5), 1241–1258.

    Article  Google Scholar 

  39. Fakhri, M., & Azami, A. (2017). Evaluation of warm mix asphalt mixtures containing reclaimed asphalt pavement and crumb rubber. Journal of Cleaner Production, 165, 1125–1132.

    Article  Google Scholar 

  40. Aksoy, A., Şamlioglu, K., Tayfur, S., & Özen, H. (2005). Effects of various additives on the moisture damage sensitivity of asphalt mixtures. Construction and Building Materials, 19(1), 11–18.

    Article  Google Scholar 

  41. Timm, D. H., & Priest, A. L. (2006). Material properties of the 2003 NCAT test track structural study (No. 06–01). Report.

  42. Pearn, W. L., & Lin, P. C. (2004). Testing process performance based on capability index Cpk with critical values. Computers & Industrial Engineering, 47(4), 351–369.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Zarei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sodeyfi, S., Kordani, A.A. & Zarei, M. Moisture Damage Resistance of Hot Mix Asphalt made with Recycled Rubber Materials and Determining the Optimal Percentage with an Economic Approach. Int. J. Pavement Res. Technol. 15, 970–986 (2022). https://doi.org/10.1007/s42947-021-00067-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42947-021-00067-5

Keywords

Navigation