Skip to main content
Log in

Dynamic properties of large stone asphalt mixtures under different methods testing and loading

  • Published:
International Journal of Pavement Research and Technology Aims and scope Submit manuscript

Abstract

Dynamic properties like complex modulus and phase angle are fundamental for the modern designs of flexible pavements based on mechanistic-empirical methods. Several studies have already obtained a good database for these properties in conventional asphalt mixtures with nominal maximum aggregate size of less than 19 mm; however, there is limited information for mixtures with large aggregates (≥ 25 mm) known as Large Stone Asphalt Mixture (LSAM). Moreover, there is no data on the most appropriate test protocol to obtain these properties since different stress states are imposed. To investigate the influence of these variables, prismatic and cylindrical samples of LSAM asphalt mixtures and conventional mixtures were prepared. The specimens were subjected to cyclic four-point bending flexural tests and cyclic uniaxial compression tests under different sinusoidal frequencies and test temperatures. The mean results of the complex modulus and phase angle master curves were statistically compared using multivariate analysis of variance (ANOVA). The results showed that the modulus values are statistically equal for the mixtures analysed but are different for the test protocols investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. American Association of State Highway and Transportation Officials, Mechanistic-Empirical Pavement Design Guide: A Manual of Practice, 2nd Edition, AASHTO, Washington DC, USA, 2008.

    Google Scholar 

  2. X. Shu, B. Huang, Dynamic Modulus Prediction of HMA Mixtures Based on the Viscoelastic Micromechanical Model, J. Mater. Civ. Eng. 20 (8) (2008) 530–538. https://doi.org/10.1061/(ASCE)0899-1561(2008)20:8(530).

    Google Scholar 

  3. M.W. Witczak, K. Kalouch, T. Pellinen, M. El-Basyouny, H. Von Quintus, Simple performance test for Superpave mix design. NCHRP Rep. 465. 3. Washington DC, USA, 2002. 114. https://doi.org/10.3141/1540-03.

  4. J.P. Corrales-Azofeifa, A.R. Archilla, Dynamic Modulus Model of Hot Mix Asphalt: Statistical Analysis Using Joint Estimation and Mixed Effects, J. Infrastruct. Syst. 24 (3) (2018) 04018012. https://doi.org/10.1061/(ASCE)IS.1943-555X.0000429.

    Google Scholar 

  5. J. L. Delorme, C. de La Roche, L. Wendling, Manuel LPC d’aide à la formulation des enrobés [LPC bituminous mixtures design guide], Paris, France, 2007, p. 200.

  6. J. Zhang, A.E. Alvarez, S.I. Lee, A. Torres, L.F. Walubita, Comparison of flow number, dynamic modulus, and repeated load tests for evaluation of HMA permanent deformation, Constr. Build. Mater. 44 (2013) 391–398. https://doi.org/10.1016/j.conbuildmat.2013.03.013.

    Google Scholar 

  7. L.F. Walubita, L. Fuentes, S.I. Lee, I. Dawd, E. Mahmoud, Comparative evaluation of five HMA rutting-related laboratory test methods relative to field performance data: DM, FN, RLPD, SPST, and HWTT, Constr. Build. Mater. 215 (2019) 737–753. https://doi.org/10.1016/j.conbuildmat.2019.04.250.

    Google Scholar 

  8. B.S. Underwood, Y.R. Kim, Determination of the appropriate representative elastic modulus for asphalt concrete, Int. J. Pavement Eng. 10 (2) (2009) 77–86. https://doi.org/10.1080/10298430701827668.

    Google Scholar 

  9. L.G.R. de Mello, M.M. de Farias, K.E. Kaloush, Using damage theory to analyze fatigue of asphalt mixtures on flexural tests, Int. J. Pavement Res. Technol. 11 (6) (2018) 617–626. https://doi.org/10.1016/j.ijprt.2018.02.003.

    Google Scholar 

  10. K.P. Biligiri, K. Kaloush, J. Uzan, Evaluation of asphalt mixtures’ viscoelastic properties using phase angle relationships, Int. J. Pavement Eng. 11 (2) (2010) 143–152. https://doi.org/10.1080/10298430903033354.

    Google Scholar 

  11. R. Bonaquist, D. Christensen, Practical Procedure for Developing Dynamic Modulus Master Curves for Pavement Structural Design, Transp. Res. Rec. 1929 (2005) 208–217. https://doi.org/10.3141/1929-25.

    Google Scholar 

  12. T.K. Pellinen, M.W. Witczak, R.F. Bonaquist, Asphalt mix master curve construction using sigmoidal fitting function with non-linear least squares optimization, 15th Eng. Mech. Div. Conf., NY, USA, 2004, pp. 83–101. https://doi.org/10.1007/BF00471692.

  13. D. Singh, M. Zaman, S. Commuri, Evaluation of Predictive Models for Estimating Dynamic Modulus of Hot-Mix Asphalt in Oklahoma, Transp. Res. Rec. J. Transp. Res. Board. 2210 (2011) 57–72. https://doi.org/10.3141/2210-07.

    Google Scholar 

  14. D. Christensen, T.K. Pellinen, R.F. Bonaquist, Hirsch Model for Estimating the Modulus of Asphalt Concrete, J. Assoc. Asph. Paving Technol. 72 (2003) 97–121.

    Google Scholar 

  15. M. Robbins, D. Timm, Evaluation of Dynamic Modulus Predictive Equations for Southeastern United States Asphalt Mixtures, Transp. Res. Rec. 2210 (2011) 122–129. https://doi.org/10.3141/2210-14.

    Google Scholar 

  16. M.S. Sakhaeifar, Y. Richard Kim, P. Kabir, New predictive models for the dynamic modulus of hot mix asphalt, Constr. Build. Mater. 76 (2015) 221–231. https://doi.org/10.1016/j.conbuildmat.2014.11.011.

    Google Scholar 

  17. K.H. Moon, A. Cannone Falchetto, M.O. Marasteanu, Rheological modelling of asphalt materials properties at low temperatures: from time domain to frequency domain, Road Mater. Pavement Des. 14 (4) (2013) 810–830. https://doi.org/10.1080/14680629.2013.817351.

    Google Scholar 

  18. Q. Xu, M. Solaimanian, Modelling linear viscoelastic properties of asphalt concrete by the Huet-Sayegh model, Int. J. Pavement Eng. 10 (6) (2009) 401–422. https://doi.org/10.1080/10298430802524784.

    Google Scholar 

  19. H. Di Benedetto, M.N. Partl, L. Francken, C.D. La Roche, S. André, Stiffness testing for bituminous mixtures, RILEM technical committes 182-PEB performance testing and evaluation of bituminouss materials, Mater. Struct. 34 (2001) 66–70. https://doi.org/10.1007/BF02481553.

    Google Scholar 

  20. H. Liu, R. Luo, Development of master curve models complying with linear viscoelastic theory for complex moduli of asphalt mixtures with improved accuracy, Constr. Build. Mater. 152 (2017) 259–268. https://doi.org/10.1016/j.conbuildmat.2017.06.143.

    Google Scholar 

  21. N. Tran, K. Hall, Evaluation of Testing Protocols for Dynamic Modulus of Hot-Mix Asphalt, Transp. Res. Rec. 1970 (2007) 126–132. https://doi.org/10.3141/1970-15.

    Google Scholar 

  22. A. Nega, B. Ghadimi, H. Nikraz, Developing Master Curves, Binder Viscosity and Predicting Dynamic Modulus of Polymer-Modified Asphalt Mixtures, Int. J. Eng. Technol. 7 (2015) 190–197. https://doi.org/10.7763/IJET.2015.V7.790.

    Google Scholar 

  23. Y.R. Kim, Y. Seo, M. King, M. Momen, Dynamic Modulus Testing of Asphalt Concrete in Indirect Tension Mode, Transp. Res. Rec. J. Transp. Res. Board. 1891 (2007) 163–173. https://doi.org/10.3141/1891-19.

    Google Scholar 

  24. Y. Xiao, E. Tutumluer, Y. Qian, J. Siekmeier, Gradation Effects Influencing Mechanical Properties of Aggregate Base-Granular Subbase Materials in Minnesota, Transp. Res. Rec. J. Transp. Res. Board. 2267 (2012) 14–26. https://doi.org/10.3141/2267-02.

    Google Scholar 

  25. Y.H. Cho, D.W. Park, S. Do Hwang, A predictive equation for dynamic modulus of asphalt mixtures used in Korea, Constr. Build. Mater. 24 (2010) 513–519. https://doi.org/10.1016/j.conbuildmat.2009.10.008.

    Google Scholar 

  26. B. Yao, G. Cheng, X. Wang, C. Cheng, Characterization of the stiffness of asphalt surfacing materials on orthotropic steel bridge decks using dynamic modulus test and flexural beam test, Constr. Build. Mater. 44 (2013) 200–206. https://doi.org/10.1016/j.conbuildmat.2013.03.037.

    Google Scholar 

  27. S. Pouget, C. Sauzéat, H. Di Benedetto, F. Olard, Modeling of viscous bituminous wearing course materials on orthotropic steel deck, Mater. Struct. Constr. 45 (7) (2012) 1115–1125. https://doi.org/10.1617/s11527-011-9820-z.

    Google Scholar 

  28. S.W. Park, Y. R. Kim, Interconversin between relaxation modulus and creep compliance for viscoelastic solids, J. Mater. Civ. Eng. 11 (1) (1999) 76–82. https://doi.org/10.1061/(ASCE)0899-1561(1999)11:1(76).

    Google Scholar 

  29. Y.R. Kim, Y.C. Lee, H.J. Lee, Correspondence Principle for Characterization of Asphalt Concrete, J. Mater. Civ. Eng. 7 (1) (1995) 59–68. https://doi.org/10.1061/(asce)0899-1561(1995)7:1(59).

    Google Scholar 

  30. W. Cao, A. Norouzi, Y.R. Kim, Application of viscoelastic continuum damage approach to predict fatigue performance of Binzhou perpetual pavements, J. Traffic Transp. Eng. (English Ed.) 3 (2) (2016) 104–115. https://doi.org/10.1016/j.jtte.2016.03.002.

    Google Scholar 

  31. P.S. Kandhal, Design of large-stone asphalt mixes to minimize rutting, Transp. Res. Rec. 1259 (1990) 153–162.

    Google Scholar 

  32. K. Mahboub, A. Simpson, P. Oduroh, J. Fleckenstein, Field Performance of Large-Stone Hot Mix Asphalt on a Kentucky Coal Haul Road, Transp. Res. Rec. 1337 (1992) 71–78.

    Google Scholar 

  33. National Cooperative Highway Research Program, NCHRP, Design and Evaluation of Large-Stone Asphalt Mixes. Report 386. Transportation Research Board, Washington DC, USA, 1997.

    Google Scholar 

  34. National Asphalt Pavement Association, Design, Construction, and Performance of Heavy Duty Mixes, NAPA, Greenbelt, MD, USA, 2002.

    Google Scholar 

  35. Z.M.G. Mascarenhas, M.S. Gaspar, K.L. Vasconcelos, L.L.B. Bernucci, A. Bhasin, Case Study of a Composite Layer with Large-Stone Asphalt Mixture for Heavy-Traffic Highways, J. Transp. Eng. Part B Pavements. 146 (1) (2020) 1–12. https://doi.org/10.1061/JPEODX.0000143.

    Google Scholar 

  36. C. E. Hingley, K. R. Peattie, W.D. Powell, French experience with grave-bitume a dense bituminous road base, TRRL Suppl. Rep., Crowthorne, Berkshire, UK, 242.,1976, p. 1–12.

  37. B. Coree, J.W. Button, Full-Scale Rutting Tests of Large-Stone Asphalt Mixtures, Transp. Res. Rec. 1590 (1997) 62–72. https://doi.org/10.3141/1590-08.

    Google Scholar 

  38. F. Hugo, F.C. Rust, P.A. Myburgh, J.A. Grobler, Large stone asphalt mix design for heavy duty asphalt pavements, 1990 Annu. Transp. Conv. Pretoria. 5B–2. Pretoria, SA,1990.

  39. SABITA, LAMBS — The Design, Construction and Use of Large Aggregate Mixes for Bases, Cape Town, South Africa, 1997, p. 1–56.

  40. American Society for Testing and Materials, Standard Specification for Viscosity-Graded Asphalt Binder for Use in Pavement Construction. ASTM 3381. ASTM International, West Conshohocken, PA, 2018.

    Google Scholar 

  41. DNIT, Pavimentos flexíveis — Concreto asfáltico — Especificação de serviço [Flexible pavements — Asphalt concrete — Service Specification]. 031/2006 — ES. Rio de Janeiro, 2006, p. 14.

  42. American Association of State Highway and Trasnportation Officials, Developing dynamic modulus Master Curves for asphalt mixtures. AASHTO R62-13. AASHTO, Washington DC, USA, 2013.

    Google Scholar 

  43. European Committee for Standardization, Bituminous mixtures — Test methods for hot mix asphalt — Part 33: Specimen prepared by roller compactor. EN 12697-33:2003, Belgium, 2007.

  44. European Committee for Standardization, Bituminous mixtures — Test methods for hot mix asphalt — Part 26: Stiffness. EN 12697-26. Belgium, 2004.

  45. Asphalt Institute, Superpave mix design. Superpave series SP-2. AI, Lexington, KY, USA, 2001.

  46. E. Levenberg, A. Shah, Interpretation of Complex Modulus Test Results for Asphalt-Aggregate Mixes, J. Test. Eval. 36 (4) (2008) 326–334. https://doi.org/10.1520/jte101577.

    Google Scholar 

  47. K. P. Biligiri, K.E. Kaloush, M.S. Mamlouk, M.W. Witczak, Rational Modeling of Tertiary Flow for Asphalt Mixtures, Transp. Res. Rec. 2001 (2007) 63–72. https://doi.org/10.3141/2001-08.

    Google Scholar 

  48. N.T. Kottegoda, R. Rosso, Applied statistics for civil and environmental engineers, Wiley, Hoboken, NJ, USA, 2008.

    Google Scholar 

  49. E. Yoder, M. W. Witczak, Principles of Pavement Design, Second Ed., Wiley, Hoboken, NJ, USA, 1975, p. 716.

    Google Scholar 

  50. L.F. Walubita, J. Zhang, A.N.M. Faruk, A.E. Alvarez, T. Scullion, Laboratory hot-mix asphalt performance testing: Asphalt mixture performance tester versus universal testing machine, Transp. Res. Rec. 2447 (2014) 61–73. https://doi.org/10.3141/2447-07.

    Google Scholar 

  51. A.F. Buss, Investigation of warm-mix asphalt using Iowa aggregates, (Thesis), Iowa State University, IO, USA, 2010, p. 242.

    Google Scholar 

Download references

Acknowledgement

The authors thank the National Council for Scientific and Technological Development (CNPq) for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Amorim Beja.

Additional information

Peer review under responsibility of Chinese Society of Pavement Engineering.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beja, I.A., de Farias, M.M., da Silva Barbosa, L.Y. et al. Dynamic properties of large stone asphalt mixtures under different methods testing and loading. Int. J. Pavement Res. Technol. 14, 186–195 (2021). https://doi.org/10.1007/s42947-020-0143-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42947-020-0143-8

Keywords

Navigation