Skip to main content
Log in

Kinetics and mechanism of diclofenac removal using ferrate(VI): roles of Fe3+, Fe2+, and Mn2+

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

In this study, the effect of Fe3+, Fe2+, and Mn2+ dose, solution pH, reaction temperature, background water matrix (i.e., inorganic anions, cations, and natural organic matters (NOM)), and the kinetics and mechanism for the reaction system of Fe(VI)/Fe3+, Fe(VI)/Fe2+, and Fe(VI)/Mn2+ were investigated systematically. Traces of Fe3+, Fe2+, and Mn2+ promoted the DCF removal by Fe(VI) significantly. The pseudo-first-order rate constant (kobs) of DCF increased with decreasing pH (9–6) and increasing temperature (10–30 °C) due to the gradually reduced stability and enhanced reactivity of Fe(VI). Cu2+ and Zn2+ ions evidently improved the DCF removal, while CO32− restrained it. Besides, SO42−, Cl, NO3, Mg2+, and Ca2+ almost had no influence on the degradation of DCF by Fe(VI)/Fe3+, Fe(VI)/Fe2+, and Fe(VI)/Mn2+ within the tested concentration. The addition of 5 or 20 mg L−1 NOM decreased the removal efficiency of DCF. Moreover, Fe2O3 and Fe(OH)3, the by-products of Fe(VI), slightly inhibited the DCF removal, while α-FeOOH, another by-product of Fe(VI), showed no influence at pH 7. In addition, MnO2 and MnO4, the by-products of Mn2+, enhanced the DCF degradation due to catalysis and superposition of oxidation capacity, respectively. This study indicates that Fe3+ and Fe2+ promoted the DCF removal mainly via the self-catalysis for Fe(VI), and meanwhile, the catalysis of Mn2+ and the effect of its by-products (i.e., MnO2 and MnO4) contributed synchronously for DCF degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aguinaco A, Beltrán FJ, García-Araya JF, Oropesa A (2012) Photocatalytic ozonation to remove the pharmaceutical diclofenac from water: influence of variables. Chem Eng J 189-190:275–282

    Article  CAS  Google Scholar 

  • Anquandah GA, Sharma VK, Knight DA, Batchu SR, Gardinali PR (2011) Oxidation of trimethoprim by ferrate(VI): kinetics, products, and antibacterial activity. Environ Sci Technol 45:10575–10581

    Article  CAS  Google Scholar 

  • Buxton GV, Greenstock CL, Helman WP, Ross AB (1988) Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/·O− in aqueous solution). J Phys Chem Ref Data 17:513–886

    Article  CAS  Google Scholar 

  • Carr JD, Kelter PB, Tabatabai A, Splichal D, Erickson J, McLaughlin CW (1985) Properties of ferrate (VI) in aqueous solution: an alternate oxidant in wastewater treatment. In: Jolley RL (ed) Proceedings of Conference on Water Chlorination Chem. Environment Impact Health Eff. Lewis, Chelsew, pp 1285–1298

    Google Scholar 

  • Cheng H, Song D, Liu H, Qu J (2015) Permanganate oxidation of diclofenac: the pH-dependent reaction kinetics and a ring-opening mechanism. Chemosphere 136:297–304

    Article  CAS  Google Scholar 

  • Feng M, Cizmas L, Wang Z, Sharma VK (2017a) Activation of ferrate(VI) by ammonia in oxidation of flumequine: kinetics, transformation products, and antibacterial activity assessment. Chem Eng J 323:584–591

    Article  CAS  Google Scholar 

  • Feng M, Cizmas L, Wang Z, Sharma VK (2017b) Synergistic effect of aqueous removal of fluoroquinolones by a combined use of peroxymonosulfate and ferrate(VI). Chemosphere 177:144–148

    Article  CAS  Google Scholar 

  • Feng M, Sharma VK (2018) Enhanced oxidation of antibiotics by ferrate(VI)-sulfur(IV) system: elucidating multi-oxidant mechanism. Chem Eng J 341:137–145

    Article  CAS  Google Scholar 

  • Filip J, Yngard RA, Siskova K, Marusak Z, Ettler V, Sajdl P, Sharma VK, Zboril R (2011) Mechanisms and efficiency of the simultaneous removal of metals and cyanides by using ferrate(VI): crucial roles of nanocrystalline iron(III) oxyhydroxides and metal carbonates. Chemistry 17:10097–10105

    Article  CAS  Google Scholar 

  • Gan W, Sharma VK, Zhang X, Yang L, Yang X (2015) Investigation of disinfection byproducts formation in ferrate(VI) pre-oxidation of NOM and its model compounds followed by chlorination. J Hazard Mater 292:197–204

    Article  CAS  Google Scholar 

  • García-Araya JF, Beltrán FJ, Aguinaco A (2010) Diclofenac removal from water by ozone and photolytic TiO2 catalysed processes. J Chem Technol Biotechnol 85:798–804

    Article  CAS  Google Scholar 

  • Goodwill JE, Mai X, Jiang Y, Reckhow DA, Tobiason JE (2016) Oxidation of manganese(II) with ferrate: stoichiometry, kinetics, products and impact of organic carbon. Chemosphere 159:457–464

    Article  CAS  Google Scholar 

  • Graham N, Jiang CC, Li XZ, Jiang JQ, Ma J (2004) The influence of pH on the degradation of phenol and chlorophenols by potassium ferrate. Chemosphere 56:949–956

    Article  CAS  Google Scholar 

  • Gupta H, Gupta B (2015) Photocatalytic degradation of polycyclic aromatic hydrocarbon benzo[a]pyrene by iron oxides and identification of degradation products. Chemosphere 138:924–931

    Article  CAS  Google Scholar 

  • Guyer GT, Ince NH (2011) Degradation of diclofenac in water by homogeneous and heterogeneous sonolysis. Ultrason Sonochem 18:114–119

    Article  CAS  Google Scholar 

  • Han Q, Wang H, Dong W, Liu T, Yin Y (2014) WITHDRAWN: suppression of bromate formation in ozonation process by using ferrate(VI): batch study. Chem Eng J 236:110–120

    Article  CAS  Google Scholar 

  • Ho C-M, Lau T-C (2000) Lewis acid activated oxidation of alkanes by barium ferrate. New J Chem 24:587–590

    Article  CAS  Google Scholar 

  • Horst C, Sharma VK, Baum JC, Sohn M (2013) Organic matter source discrimination by humic acid characterization: synchronous scan fluorescence spectroscopy and ferrate(VI). Chemosphere 90:2013–2019

    Article  CAS  Google Scholar 

  • Hrostowski HJ, Scott AB (1950) The magnetic susceptibility of potassium ferrate. J Chem Phys 18:105–107

    Article  CAS  Google Scholar 

  • Huang J, Wang Y, Liu G, Chen P, Wang F, Ma J, Li F, Liu H, Lv W (2017) Oxidation of indometacin by ferrate (VI): kinetics, degradation pathways and toxicity assessment. Environ Sci Pollut Res Int 24:10786–10795

    Article  CAS  Google Scholar 

  • Huguet M, Deborde M, Papot S, Gallard H (2013) Oxidative decarboxylation of diclofenac by manganese oxide bed filter. Water Res 47:5400–5408

    Article  CAS  Google Scholar 

  • Jain A, Sharma VK, Mbuya OS (2009) Removal of arsenite by Fe(VI), Fe(VI)/Fe(III), and Fe(VI)/Al(III) salts: effect of pH and anions. J Hazard Mater 169:339–344

    Article  CAS  Google Scholar 

  • Jiang J-Q, Stanford C, Alsheyab M (2009) The online generation and application of ferrate(VI) for sewage treatment—a pilot scale trial. Sep Purif Technol 68:227–231

    Article  CAS  Google Scholar 

  • Jiang Y, Goodwill JE, Tobiason JE, Reckhow DA (2015) Effect of different solutes, natural organic matter, and particulate Fe(III) on ferrate(VI) decomposition in aqueous solutions. Environ Sci Technol 49:2841–2848

    Article  CAS  Google Scholar 

  • Johnson MD, Lorenz BB (2015) Antimony remediation using ferrate(VI). Sep Sci Technol 50:1611–1615

    Article  CAS  Google Scholar 

  • Kim C, Panditi VR, Gardinali PR, Varma RS, Kim H, Sharma VK (2015) Ferrate promoted oxidative cleavage of sulfonamides: kinetics and product formation under acidic conditions. Chem Eng J 279:307–316

    Article  CAS  Google Scholar 

  • Kralchevska RP, Prucek R, Kolarik J, Tucek J, Machala L, Filip J, Sharma VK, Zboril R (2016) Remarkable efficiency of phosphate removal: ferrate(VI)-induced in situ sorption on core-shell nanoparticles. Water Res 103:83–91

    Article  CAS  Google Scholar 

  • Lan B, Wang Y, Wang X, Zhou X, Kang Y, Li L (2016) Aqueous arsenic (As) and antimony (Sb) removal by potassium ferrate. Chem Eng J 292:389–397

    Article  CAS  Google Scholar 

  • Lee Y, Kissner R, von Gunten U (2014) Reaction of ferrate(VI) with ABTS and self-decay of ferrate(VI): kinetics and mechanisms. Environ Sci Technol 48:5154–5162

    Article  CAS  Google Scholar 

  • Luo Z, Li X, Zhai J (2016) Kinetic investigations of quinoline oxidation by ferrate(VI). Environ Technol 37:1249–1256

    Article  CAS  Google Scholar 

  • Manoli K, Nakhla G, Feng M, Sharma VK, Ray AK (2017a) Silica gel-enhanced oxidation of caffeine by ferrate(VI). Chem Eng J 330:987–994

    Article  CAS  Google Scholar 

  • Manoli K, Nakhla G, Ray AK, Sharma VK (2017b) Enhanced oxidative transformation of organic contaminants by activation of ferrate(VI): possible involvement of Fe V /Fe IV species. Chem Eng J 307:513–517

    Article  CAS  Google Scholar 

  • Manoli K, Nakhla G, Ray AK, Sharma VK (2017c) Oxidation of caffeine by acid-activated ferrate(VI): effect of ions and natural organic matter. AICHE J 63:4998–5006

    Article  CAS  Google Scholar 

  • Michael I, Achilleos A, Lambropoulou D, Torrens VO, Pérez S, Petrović M, Barceló D, Fatta-Kassinos D (2014) Proposed transformation pathway and evolution profile of diclofenac and ibuprofen transformation products during (sono)photocatalysis. Appl Catal B Environ 147:1015–1027

    Article  CAS  Google Scholar 

  • Nie E, Yang M, Wang D, Yang X, Luo X, Zheng Z (2014) Degradation of diclofenac by ultrasonic irradiation: kinetic studies and degradation pathways. Chemosphere 113:165–170

    Article  CAS  Google Scholar 

  • Noorhasan NN, Sharma VK (2008) Kinetics of the reaction of aqueous iron(vi) (FeVIO42-) with ethylenediaminetetraacetic acid. Dalton Trans 1883–1887. https://doi.org/10.1039/b715154c

  • Noorhasan N, Patel B, Sharma VK (2010) Ferrate(VI) oxidation of glycine and glycylglycine: kinetics and products. Water Res 44(3):927–935

    Article  CAS  Google Scholar 

  • Pochard I, Denoyel R, Couchot P, Foissy A (2002) Adsorption of barium and calcium chloride onto negatively charged α-Fe2O3 particles. J Colloid Interface Sci 255:27–35

    Article  CAS  Google Scholar 

  • Prucek R, Tucek J, Kolarik J, Huskova I, Filip J, Varma RS, Sharma VK, Zboril R (2015) Ferrate(VI)-prompted removal of metals in aqueous media: mechanistic delineation of enhanced efficiency via metal entrenchment in magnetic oxides. Environ Sci Technol 49:2319–2327

    Article  CAS  Google Scholar 

  • Rizzo L, Meric S, Kassinos D, Guida M, Russo F, Belgiorno V (2009) Degradation of diclofenac by TiO(2) photocatalysis: UV absorbance kinetics and process evaluation through a set of toxicity bioassays. Water Res 43:979–988

    Article  CAS  Google Scholar 

  • Rush JD, Zhao Z, Bielski BHJ (1996) Reaction of ferrate(VI)/ferrate(V) with hydrogen peroxide and superoxide anion-a stopped-flow and premix pulse radiolysis study. Free Rad Res 24:187–198

    Article  CAS  Google Scholar 

  • Sharma VK, O’Connor DB (2000) Ferrate(V) oxidation of thiourea: a premix pulse radiolysis study. Inorg Chim Acta 311:40–44

    Article  CAS  Google Scholar 

  • Sharma VK, Burnett CR, Millero FJ (2001) Dissociation constants of the monoprotic ferrate(VI) ion in NaCl media. Phys Chem Chem Phys 3:2059–2062

    Article  CAS  Google Scholar 

  • Sharma VK (2011) Oxidation of inorganic contaminants by ferrates (VI, V, and IV)—kinetics and mechanisms: a review. J Environ Manag 92:1051–1073

    Article  CAS  Google Scholar 

  • Sharma VK (2013) Ferrate(VI) and ferrate(V) oxidation of organic compounds: kinetics and mechanism. Coord Chem Rev 257:495–510

    Article  CAS  Google Scholar 

  • Sharma VK, Chen L, Zboril R (2015a) Review on high valent FeVI (ferrate): a sustainable green oxidant in organic chemistry and transformation of pharmaceuticals. ACS Sustain Chem Eng 4:18–34

    Article  CAS  Google Scholar 

  • Sharma VK, Zboril R, Varma RS (2015b) Ferrates: greener oxidants with multimodal action in water treatment technologies. Acc Chem Res 48:182–191

    Article  CAS  Google Scholar 

  • Shu Z, Bolton JR, Belosevic M, El Din MG (2013) Photodegradation of emerging micropollutants using the medium-pressure UV/H2O2 advanced oxidation process. Water Res 47:2881–2889

    Article  CAS  Google Scholar 

  • Snyder SA, Adham S, Redding AM, Cannon FS, DeCarolis J, Oppenheimer J, Wert EC, Yoon Y (2007) Role of membranes and activated carbon in the removal of endocrine disruptors and pharmaceuticals. Desalination 202:156–181

    Article  CAS  Google Scholar 

  • Song Y, Deng Y, Jung C (2016) Mitigation and degradation of natural organic matters (NOMs) during ferrate(VI) application for drinking water treatment. Chemosphere 146:145–153

    Article  CAS  Google Scholar 

  • Soufan M, Deborde M, Legube B (2012) Aqueous chlorination of diclofenac: kinetic study and transformation products identification. Water Res 46:3377–3386

    Article  CAS  Google Scholar 

  • Wang H, Liu Y, Jiang JQ (2016) Reaction kinetics and oxidation product formation in the degradation of acetaminophen by ferrate (VI). Chemosphere 155:583–590

    Article  CAS  Google Scholar 

  • Wang Y, Liu H, Liu G, Xie Y, Gao S (2015) Oxidation of diclofenac by potassium ferrate (VI): reaction kinetics and toxicity evaluation. Sci Total Environ 506-507:252–258

    Article  CAS  Google Scholar 

  • Weast RC (1970-1971) Handbook of Chemistry and Physics, vol 51. CRC Press, Cleveland, p 111

    Google Scholar 

  • Wood RH (1958) The heat, free energy, and entropy of the ferrate(VI) ion. J Amer Chem Soc 80:2038–2041

    Article  CAS  Google Scholar 

  • Xu GR, Zhang YP, Li GB (2009) Degradation of azo dye active brilliant red X-3B by composite ferrate solution. J Hazard Mater 161:1299–1305

    Article  CAS  Google Scholar 

  • Yang B, Ying GG (2013) Oxidation of benzophenone-3 during water treatment with ferrate(VI). Water Res 47:2458–2466

    Article  CAS  Google Scholar 

  • Yang Y-J, Liu E-H, Li L-M, Huang Z-Z, Shen H-J, Xiang X-X (2010) Nanostructured amorphous MnO2 prepared by reaction of KMnO4 with triethanolamine. J Alloys Compd 505:555–559

    Article  CAS  Google Scholar 

  • Yu W, Yang Y, Graham N (2016) Evaluation of ferrate as a coagulant aid/oxidant pretreatment for mitigating submerged ultrafiltration membrane fouling in drinking water treatment. Chem Eng J 298:234–242

    Article  CAS  Google Scholar 

  • Zhang P, Zhang G, Dong J, Fan M, Zeng G (2012) Bisphenol A oxidative removal by ferrate (Fe(VI)) under a weak acidic condition. Sep Purif Technol 84:46–51

    Article  CAS  Google Scholar 

  • Zhang T, Zhu H, Croue JP (2013) Production of sulfate radical from peroxymonosulfate induced by a magnetically separable CuFe2O4 spinel in water: efficiency, stability, and mechanism. Environ Sci Technol 47:2784–2791

    Article  CAS  Google Scholar 

  • Zhang Y, Geissen SU, Gal C (2008) Carbamazepine and diclofenac: removal in wastewater treatment plants and occurrence in water bodies. Chemosphere 73:1151–1161

    Article  CAS  Google Scholar 

  • Zhao J, Liu Y, Wang Q, Fu Y, Lu X, Bai X (2018) The self-catalysis of ferrate (VI) by its reactive byproducts or reductive substances for the degradation of diclofenac: kinetics, mechanism and transformation products. Sep Purif Technol 192:412–418

    Article  CAS  Google Scholar 

  • Zhou JH, Chen KB, Hong QK, Zeng FC, Wang HY (2017) Degradation of chloramphenicol by potassium ferrate (VI) oxidation: kinetics and products. Environ Sci Pollut Res Int 24:10166–10171

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Key R & D project of Science and Technology Department of Sichuan Province [No. 2017SZ0175], the Science and Technology Huimin Project of Chengdu [No. 2014-HM01-00278-SF], and the Joint Research Program about Sustainable Use of Water and Resources in the Upper Yangtze River [No. 2012DFG91520].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qun Wang or Yongsheng Fu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Vítor Pais Vilar

Highlights

• DCF removal using Fe(VI) was promoted by Cu2+ and Zn2+ but restrained by CO32−.

• Fe2O3 and Fe(OH)3 inhibited DCF removal, while α-FeOOH showed no influence at pH 7.

• MnO2 and MnO4 enhanced DCF oxidation using Fe(VI) via catalysis and superposition of oxidizability.

• Fe3+ and Fe2+ promoted DCF removal efficiency mainly through the self-catalysis of Fe(VI).

• The catalysis of Mn2+ and the effect of by-products contributed for DCF degradation greatly.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Wang, Q., Fu, Y. et al. Kinetics and mechanism of diclofenac removal using ferrate(VI): roles of Fe3+, Fe2+, and Mn2+. Environ Sci Pollut Res 25, 22998–23008 (2018). https://doi.org/10.1007/s11356-018-2375-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-2375-6

Keywords

Navigation