Skip to main content
Log in

A bibliometric analysis of molybdenum-based nanomaterials in the biomedical field

  • Review Paper
  • Published:
Tungsten Aims and scope Submit manuscript

Abstract

Molybdenum (Mo)-based nanomaterials have been widely used in biomedical fields due to their various nanostructures and unique physical/chemical properties. Although various reviews have described the development of Mo-based materials in the biomedical field, an objective and comprehensive summary and analysis of research trends in this field is still rare. Therefore, we used the bibliometric analysis method to analyze all relevant literature on the biological application of Mo-based nanomaterials in recent years. First, we use bibliometric tools to analyze the dataset by year, country/region, institution and research hotspot to obtain the research trends. Next, based on objectively identified research hotspots, the biomedical applications of Mo-based nanomaterials are reviewed comprehensively, mainly including sensors, cancer imaging/therapy and antibacterial applications. Finally, we discussed the application prospects and challenges of Mo-based materials. This article provides a new perspective to understand the current research progress and further promote the development of Mo-based nanomaterials in biomedical research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

b MoS2 structural polymorphic coordination diagram, 2H, 3R and 1 T. Reproduced with permission from Ref [8]. Copyright 2015, Royal Society of Chemistry. c Crystal structure diagram of MoOx, from left to right, from top to bottom: MoO3 monomer structure; orthorhombic α-MoO3, the layered structure is kept together by van der Waals force; metastable monoclinic β-MoO3; ε- MoO3; metastable h-MoO3; tunnel structure along the c-axis of the h-MoO3 cell. Reproduced with permission from Ref [14]. Copyright 2017, Wiley. d Polyhedral representation of some Mo-POM structures. Reproduced with permission from Ref [18]. Copyright 2020, Wiley

Scheme 1

The graph of imaging/therapy is reproduced with permission (drug delivery: reproduced with permission from Ref.[28], Copyright 2014, Wiley; computed tomography (CT): reproduced with permission from Ref. [29], 2017, Royal Society of Chemistry; photoacoustic imaging (PAI): reproduced with permission from Ref. [30], 2021, Royal Society of Chemistry; the graph of biological sensing: reproduced with permission from Ref. [31,32,33]. Copyright 2013, American Chemical Society, Copyright 2017, Elsevier, Copyright 2014, American Chemical Society)

Fig. 2
Fig. 3
Fig. 4

Reproduced with permission from Ref. [67] Copyright 2013, American Chemical Society. b Schematic illustration of using MoS2 nanosheet as an effective sensing biosensor. c FL emission spectra of DNA–MoS2 nanosheet biosensor in the presence of increasing amounts of thrombin. d FL enhancements (F/F0) of DNA–MoS2 nanosheet biosensor in the Tris–HCl buffer. (BSA bovine serum albumin, Lys lysine, lgG immunoglobulin G) Reproduced with permission from Ref. [70] Copyright 2014, Royal Society of Chemistry. e Schematic Representation of the detection of HAase. (QDs quantum dots, HA-AuNp hyaluronic acid—Au nanoparticles) f The FL spectra of MoS2 quantum dots/HA–Au nanoparticles incubated with different concentrations of HAase. g The linear plots of FL versus the concentrations of HAase. h FL recovery of MoS2 quantum dots quenched by HA–Au nanoparticles. (Cyt c cytochrome c, ALP alkaline phosphatas, UA uric acid, Glu glucose) Reproduced with permission from Ref. [40] Copyright 2016, American Chemical Society

Fig. 5

Reproduced with permission from Ref. [79] Copyright 2020, Elsevier. b Schematic Illustration of the ultrasensitive “on − off” ECL aptasensor for LPS detection based on aptamer recognition-driven target-cycling synchronized RCA. (MCH 6-mercapto-1-hexanol, CS chitosan, CRP circular recognition probe, dNTPs deoxyribonucleoside triphosphate, c-primer complementary sequence of primer) Reproduced with permission from Ref. [80] Copyright 2017, American Chemical Society. c Schematic illustration of the fabrication procedure from the Mo foil to MoOxNy NTs by anodization and thermal conversion. SEM top view and the fabrication of the ECL immunosensor. (NPs nanoparticles) Reproduced with permission from Ref. [81] Copyright 2018, American Chemical Society. d Schematic illustration of fabrication procedure of luminal–Au nanoparticles@Mo2C and the fabrication of the ECL immunosensor. (BPEI branched polyethylenimine) Reproduced with permission from Ref. [45] Copyright 2017, American Chemical Society

Fig. 6

Reproduced with permission from Ref. [103] Copyright 2016, Royal Society of Chemistry. b PA imaging in vitro and in vivo. In vivo PA images of HeLa tumor-bearing mice before and after injection of MoO3−x quantum dots for different times (top); MoO3−x quantum dots were administered via intratumoral injection (middle); MoO3−x quantum dots were administered via tail intravenous injection (bottom). Reproduced with permission from Ref. [15] Copyright 2017, Royal Society of Chemistry. c PA images of 4T1 tumors after intravenously injected with MoS2@polyaniline (PANI) nanohybrids at different time points (top). In vivo CT images of 4T1 tumor-bearing mice and tumors before and 8 h after intravenous injection with MoS2@PANI nanohybrids (left). Corresponding HU value of MoS2@PANI nanohybrids in the tumor before injection and 8 h after injection (right). Reproduced with permission from Ref. [117] Copyright 2016, American Chemical Society

Fig. 7

Reproduced with permission from Ref. [125] Copyright 2018, Royal Society of Chemistry. b Schematic illustration of the plasmonic photothermal conversion. Reproduced with permission from Ref. [136] Copyright 2021, Wiley. c Photographs of mice in the different treatment groups on the 15th day (left) and H&E stained histological images of the tumors after different treatments (right). Reproduced with permission from Ref. [139] Copyright 2018, Royal Society of Chemistry

Fig. 8

Reproduced with permission from Ref. [147] Copyright 2022, Wiley. b Illustration of the synthesis and CDT–PTT mechanisms of the Mo-POM (left) and 2',7'-dichlorofluorescein diacetate as the FL probe of ROS in different treatment groups; green indicates the generation of ROS (top) and calcein acetoxymethyl ester/ Propidium Iodide (AM/PI) double staining was used to observe the cell survival rate. Red represents dead cells and green represents living cells (bottom). (GSSG L-Glutathione oxidized) Reproduced with permission from Ref. [156] Copyright 2019, Wiley. c Schematic illustration of the synthesis of drug-loaded DOX @MoS2-HA-coated MoS2-PMOF (PMA) (left) and drug release curves under different conditions by near infrared light (middle) and photos of tumor-bearing mice before and after treatment (right). (PDA polydopamine, BTC 1,3,5-benzenetricarboxylic acid. PMOF MoS2-polydopamine MOF, PBS Phosphate belanced solution) Reproduced with permission from Ref. [173] Copyright 2021, Royal Society of Chemistry

Fig. 9

Reproduced with permission from Ref. [193] Copyright 2016, Royal Society of Chemistry. b The mechanism of the production of ROS by MoS2 (left) and field emission scanning electron microscopy (FESEM) images of bacteria after irradiation by 660 nm light or staying in dark for 20 min (right). Reproduced with permission from Ref. [199] Copyright 2020, ELSEVIER. c Scheme of the treatment of wound infection with MoOx in mice (left) and the survival rate of Methicillin-resistant Staphylococcus aureus (MRSA) under 20 min NIR irradiation (right). (POD Peroxidase, NDs nanodots) Reproduced with permission from Ref. [205] Copyright 2021, Wiley. d Scheme of the molecular antibacterial mechanism of the MoS2 nanosheet interacting with the bacterial cell membrane. Reproduced with permission from Ref. [221] Copyright 2018, Royal Society of Chemistry

Similar content being viewed by others

Data availability

The raw/produced data can be acquired from the corresponding authors on reasonable request.

References

  1. Chianelli RR, Prestridge EB, Pecoraro TA, Deneufville JP. Molybdenum disulfide in the poorly crystalline “Rag” structure. Science. 1979;203:1105.

    Article  CAS  PubMed  ADS  Google Scholar 

  2. Wu JY, Zhang XY, Ma XD, Qiu YP, Zhang T. High quantum-yield luminescent MoS2 quantum dots with variable light emission created via direct ultrasonic exfoliation of MoS2 nanosheets. RSC Adv. 2015;5(115):95178.

    Article  CAS  ADS  Google Scholar 

  3. Fang C, Yan P, Ren Z, Wang Y, Cai X, Li X, Han G. Multifunctional MoO2-ICG nanoplatform for 808nm-mediated synergetic photodynamic/photothermal therapy. Appl Mater Today. 2019;15:472.

    Article  Google Scholar 

  4. Chen X, Zhang H, Zhang M, Zhao P, Song R, Gong T, Liu Y, He X, Zhao K, Bu W. Amorphous Fe-based nanoagents for self-enhanced chemodynamic therapy by re-establishing tumor acidosis. Adv Funct Mater. 2020;30(6):1908365.

    Article  CAS  Google Scholar 

  5. Chen Y, Wang L, Shi J. Two-dimensional non-carbonaceous materials-enabled efficient photothermal cancer therapy. Nano Today. 2016;11(3):292.

    Article  CAS  Google Scholar 

  6. Xu S, Li D, Wu P. One-pot, facile, and versatile synthesis of monolayer MoS2/WS2 quantum dots as bioimaging probes and efficient electrocatalysts for hydrogen evolution reaction. Adv Funct Mater. 2015;25(7):1127.

    Article  CAS  Google Scholar 

  7. Singh E, Kim KS, Yeom GY, Nalwa HS. Atomically thin-layered molybdenum disulfide (MoS2) for bulk-heterojunction solar cells. ACS Appl Mater Interfaces. 2017;9(4):3223.

    Article  CAS  PubMed  Google Scholar 

  8. Huang Y, Guo J, Kang Y, Ai Y, Li CM. Two dimensional atomically thin MoS2 nanosheets and their sensing applications. Nanoscale. 2015;7(46):19358.

    Article  CAS  PubMed  ADS  Google Scholar 

  9. Dai W, Dong H, Fugetsu B, Cao Y, Lu H, Ma X, Zhang X. Tunable fabrication of molybdenum disulfide quantum dots for intracellular microRNA detection and multiphoton bioimaging. Small. 2015;11(33):4158.

    Article  CAS  PubMed  Google Scholar 

  10. Kalantar-zadeh K, Ou JZ, Daeneke T, Strano MS, Pumera M, Gras SL. Two-dimensional transition metal dichalcogenides in biosystems. Adv Funct Mater. 2015;25(32):5086.

    Article  CAS  Google Scholar 

  11. Chow PK, Jacobs-Gedrim RB, Gao J, Lu TM, Yu B, Terrones H, Koratkar N. Defect-induced photoluminescence in monolayer semiconducting transition metal dichalcogenides. ACS Nano. 2015;9(2):1520.

    Article  CAS  PubMed  Google Scholar 

  12. Zhu H, Ni N, Govindarajan S, Ding X, Leong DT. Phototherapy with layered materials derived quantum dots. Nanoscale. 2020;12(1):43.

    Article  CAS  PubMed  Google Scholar 

  13. Yin H, Kuwahara Y, Mori K, Cheng H, Wen M, Yamashita H. High-surface-area plasmonic MoO3−x: rational synthesis and enhanced ammonia borane dehydrogenation activity. J Mater Chem A. 2017;5(19):8946.

    Article  CAS  Google Scholar 

  14. de Castro IA, Datta RS, Ou JZ, Castellanos-Gomez A, Sriram S, Daeneke T, Kalantar-zadeh K. Molybdenum oxides—from fundamentals to functionality. Adv Mater. 2017;29(40):1701619.

    Article  Google Scholar 

  15. Ding D, Guo W, Guo C, Sun J, Zheng N, Wang F, Yan M, Liu S. MoO3−x quantum dots for photoacoustic imaging guided photothermal/photodynamic cancer treatment. Nanoscale. 2017;9(5):2020.

    Article  CAS  PubMed  Google Scholar 

  16. Xing Y, Cai Y, Cheng J, Xu X. Applications of molybdenum oxide nanomaterials in the synergistic diagnosis and treatment of tumor. Appl Nanosci. 2020;10(7):2069.

    Article  CAS  ADS  Google Scholar 

  17. Attoui M, Pouget E, Oda R, Talaga D, Le Bourdon G, Buffeteau T, Nlate S. Optically active polyoxometalate-based silica nanohelices: induced chirality from inorganic nanohelices to achiral POM clusters. Chem Eur J. 2018;24(44):11344.

    Article  CAS  PubMed  Google Scholar 

  18. Guedes G, Wang S, Santos HA, Sousa FL. Polyoxometalate composites in cancer therapy and diagnostics. Eur J Inorg Chem. 2020;2020(22):2121.

    Article  CAS  Google Scholar 

  19. Long DL, Tsunashima R, Cronin L. Polyoxometallate als bausteine für funktionelle nanosysteme. Angew Chem Int Ed. 2010;122(10):1780.

    Article  ADS  Google Scholar 

  20. Kortz U, Müller A, van Slageren J, Schnack J, Dalal NS, Dressel M. Polyoxometalates: fascinating structures, unique magnetic properties. Coord Chem Rev. 2009;253(19):2315.

    Article  CAS  Google Scholar 

  21. Hasenknopf B. Polyoxometalates: introduction to a class of inorganic compounds and their biomedical applications. FBL. 2005;10(1):275.

    CAS  Google Scholar 

  22. Rhule JT, Hill CL, Judd DA, Schinazi RF. Polyoxometalates in medicine. Chem Rev. 1998;98(1):327.

    Article  CAS  PubMed  Google Scholar 

  23. Yadav V, Roy S, Singh P, Khan Z, Jaiswal A. 2D MoS2-based nanomaterials for therapeutic, bioimaging, and biosensing applications. Small. 2019;15(1):1803706.

    Article  Google Scholar 

  24. Li X, Shan J, Zhang W, Su S, Yuwen L, Wang L. Recent advances in synthesis and biomedical applications of two-dimensional transition metal dichalcogenide nanosheets. Small. 2017;13(5):1602660.

    Article  Google Scholar 

  25. Zhou M, Liu Y, Su Y, Su Q. Plasmonic oxygen defects in MO3−x (M = W or Mo) nanomaterials: synthesis, modifications, and biomedical applications. Adv Healthcare Mater. 2021;10(23):2101331.

    Article  CAS  Google Scholar 

  26. Wu H, Tong L, Wang Y, Yan H, Sun Z. Bibliometric analysis of global research trends on ultrasound microbubble: a quickly developing field. Front Pharmacol. 2021;12:646626.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Liu Y, Zhu S, Gu Z, Zhao Y. A bibliometric analysis: research progress and prospects on transition metal dichalcogenides in the biomedical field. Chin Chem Lett. 2021;32(12):3762.

    Article  CAS  Google Scholar 

  28. Liu T, Wang C, Gu X, Gong H, Cheng L, Shi X, Feng L, Sun B, Liu Z. Drug delivery with pegylated MoS2 nano-sheets for combined photothermal and chemotherapy of cancer. Adv Mater. 2014;26(21):3433.

    Article  PubMed  Google Scholar 

  29. Liu L, Wang J, Tan X, Pang X, You Q, Sun Q, Tan F, Li N. Photosensitizer loaded PEG–MoS2–Au hybrids for CT/NIRF imaging-guided stepwise photothermal and photodynamic therapy. J Mater Chem B. 2017;5(12):2286.

    Article  CAS  PubMed  Google Scholar 

  30. Li X, Xiu W, Xiao H, Li Y, Yang K, Yuwen L, Yang D, Weng L, Wang L. Fluorescence and ratiometric photoacoustic imaging of endogenous furin activity via peptide functionalized MoS2 nanosheets. Biomater Sci. 2021;9(24):8313.

    Article  CAS  PubMed  Google Scholar 

  31. Wang TY, Zhu HC, Zhuo JQ, Zhu ZW, Papakonstantinou P, Lubarsky G, Lin J, Li MX. Biosensor based on ultrasmall MoS2 nanoparticles for electrochemical detection of H2O2 released by cells at the nanomolar level. Anal Chem. 2013;85(21):10289.

    Article  CAS  PubMed  Google Scholar 

  32. Rahman MS, Anower MS, Hasan MR, Hossain MB, Haque MI. Design and numerical analysis of highly sensitive Au–MoS2–graphene based hybrid surface plasmon resonance biosensor. Opt Commun. 2017;396:36.

    Article  CAS  ADS  Google Scholar 

  33. Sarkar D, Liu W, Xie XJ, Anselmo AC, Mitragotri S, Banerjee K. MoS2 field-effect transistor for next-generation label-free biosensors. ACS Nano. 2014;8(4):3992.

    Article  CAS  PubMed  Google Scholar 

  34. Bornmann L, Daniel HD. The state of h index research. Is the h index the ideal way to measure research performance. EMBO Rep. 2009;10:2.

    Article  CAS  PubMed  Google Scholar 

  35. van Eck NJ, Waltman L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics. 2010;84(2):523.

    Article  PubMed  Google Scholar 

  36. Parlak O, Incel A, Uzun L, Turner APF, Tiwari A. Structuring Au nanoparticles on two-dimensional MoS2 nanosheets for electrochemical glucose biosensors. Biosens Bioelectron. 2017;89:545.

    Article  CAS  PubMed  Google Scholar 

  37. Shuai HL, Huang KJ, Chen YX, Fang LX, Jia MP. Au nanoparticles/hollow molybdenum disulfide microcubes based biosensor for microRNA-21 detection coupled with duplex-specific nuclease and enzyme signal amplification. Biosens Bioelectron. 2017;89:989.

    Article  CAS  PubMed  Google Scholar 

  38. Shuai HL, Wu X, Huang KJ, Zhai ZB. Ultrasensitive electrochemical biosensing platform based on spherical silicon dioxide/molybdenum selenide nanohybrids and triggered hybridization chain reaction. Biosens Bioelectron. 2017;94:616.

    Article  CAS  PubMed  Google Scholar 

  39. Kong RM, Ding L, Wang ZJ, You JM, Qu FL. A novel aptamer-functionalized MoS2 nanosheet fluorescent biosensor for sensitive detection of prostate specific antigen. Anal Bioanal Chem. 2015;407(2):369.

    Article  CAS  PubMed  Google Scholar 

  40. Gu W, Yan YH, Zhang CL, Ding CP, Xian YZ. One-step synthesis of water-soluble MoS2 quantum dots via a hydrothermal method as a fluorescent probe for hyaluronidase detection. ACS Appl Mater Interfaces. 2016;8(18):11272.

    Article  CAS  PubMed  Google Scholar 

  41. Shi JY, Lyu J, Tian F, Yang M. A fluorescence turn-on biosensor based on graphene quantum dots (GQDs) and molybdenum disulfide (MoS2) nanosheets for epithelial cell adhesion molecule (EpCAM) detection. Biosens Bioelectron. 2017;93:182.

    Article  CAS  PubMed  Google Scholar 

  42. Kaushik S, Tiwari UK, Pal SS, Sinha RK. Rapid detection of Escherichia coli using fiber optic surface plasmon resonance immunosensor based on biofunctionalized Molybdenum disulfide (MoS2) nanosheets. Biosens Bioelectron. 2019;126:501.

    Article  CAS  PubMed  Google Scholar 

  43. Li MY, Singh R, Marques C, Zhang BY, Kumar S. 2D material assisted SMF-MCF-MMF-SMF based LSPR sensor for creatinine detection. Opt Express. 2021;29(23):38150.

    Article  CAS  PubMed  ADS  Google Scholar 

  44. Murugesan D, Moulaee K, Neri G, Ponpandian N, Viswanathan C. Alpha-MoO3 nanostructure on carbon cloth substrate for dopamine detection. Nanotechnology. 2019;30(26):11.

    Article  Google Scholar 

  45. Zhu XQ, Zhai QF, Gu WL, Li J, Wang EK. High-sensitivity electrochemiluminescence probe with molybdenum carbides as nanocarriers for alpha-fetoprotein sensing. Anal Chem. 2017;89(22):12108.

    Article  CAS  PubMed  Google Scholar 

  46. Majd SM, Salimi A, Ghasemi F. An ultrasensitive detection of miRNA-155 in breast cancer via direct hybridization assay using two-dimensional molybdenum disulfide field-effect transistor biosensor. Biosens Bioelectron. 2018;105:6.

    Article  CAS  PubMed  Google Scholar 

  47. Shan JJ, Li JH, Chu XY, Xu MZ, Jin FJ, Wang XJ, Ma L, Fang X, Wei ZP, Wang XH. High sensitivity glucose detection at extremely low concentrations using a MoS2-based field-effect transistor. RSC Adv. 2018;8(15):7942.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  48. Naresh V, Lee N. A review on biosensors and recent development of nanostructured materials-enabled biosensors. Sensors. 2021;21(4):35.

    Article  Google Scholar 

  49. Su S, Sun HF, Xu F, Yuwen LH, Wang LH. Highly sensitive and selective determination of dopamine in the presence of ascorbic acid using gold nanoparticles-decorated MoS2 nanosheets modified electrode. Electroanalysis. 2013;25(11):2523.

    Article  CAS  Google Scholar 

  50. Wu SX, Zeng ZY, He QY, Wang ZJ, Wang SJ, Du YP, Yin ZY, Sun XP, Chen W, Zhang H. Electrochemically reduced single-layer MoS2 nanosheets: characterization, properties, and sensing applications. Small. 2012;8(14):2264.

    Article  CAS  PubMed  ADS  Google Scholar 

  51. Wang L, Wang Y, Wong JI, Palacios T, Kong J, Yang HY. Functionalized MoS2 nanosheet-based field-effect biosensor for label-free sensitive detection of cancer marker proteins in solution. Small. 2014;10(6):1101.

    Article  CAS  PubMed  Google Scholar 

  52. Chen W, Cai S, Ren QQ, Wen W, Zhao YD. Recent advances in electrochemical sensing for hydrogen peroxide: a review. Analyst. 2012;137(1):49.

    Article  CAS  PubMed  ADS  Google Scholar 

  53. Yu J, Ma XY, Yin WY, Gu ZJ. Synthesis of PVP-functionalized ultra-small MoS2 nanoparticles with intrinsic peroxidase-like activity for H2O2 and glucose detection. RSC Adv. 2016;6(84):81174.

    Article  CAS  ADS  Google Scholar 

  54. Zhao LJ, Cheng M, Liu GN, Lu HY, Gao Y, Yan X, Liu FM, Sun P, Lu GY. A fluorescent biosensor based on molybdenum disulfide nanosheets and protein aptamer for sensitive detection of carcinoembryonic antigen. Sens Actuator B-Chem. 2018;273:185.

    Article  CAS  Google Scholar 

  55. Lin TR, Zhong LS, Guo LQ, Fu FF, Chen GN. Seeing diabetes: visual detection of glucose based on the intrinsic peroxidase-like activity of MoS2 nanosheets. Nanoscale. 2014;6(20):11856.

    Article  CAS  PubMed  ADS  Google Scholar 

  56. Wang TY, Zhu RZ, Zhuo JQ, Zhu ZW, Shao YH, Li MX. Direct detection of DNA below ppb level based on thionin-functionalized layered MoS2 electrochemical sensors. Anal Chem. 2014;86(24):12064.

    Article  CAS  PubMed  Google Scholar 

  57. Cao XY. Ultra-sensitive electrochemical DNA biosensor based on signal amplification using gold nanoparticles modified with molybdenum disulfide, graphene and horseradish peroxidase. Microchim Acta. 2014;181(9–10):1133.

    Article  CAS  Google Scholar 

  58. Duan KY, Du YL, Feng QL, Ye XL, Xie H, Xue MY, Wang CM. Synthesis of platinum nanoparticles by using molybdenum disulfide as a template and its application to enzyme-like catalysis. ChemCatChem. 2014;6(7):1873.

    Article  CAS  Google Scholar 

  59. Shin JW, Yoon J, Shin M, Choi JW. Electrochemical dopamine biosensor composed of silver encapsulated MoS2 hybrid nanoparticle. Biotechnol Bioprocess Eng. 2019;24(1):135.

    Article  CAS  Google Scholar 

  60. Huang KJ, Wang L, Li J, Liu YM. Electrochemical sensing based on layered MoS2-graphene composites. Sens Actuator B-Chem. 2013;178:671.

    Article  CAS  ADS  Google Scholar 

  61. Peng J, Weng J. Enhanced peroxidase-like activity of MoS2/graphene oxide hybrid with light irradiation for glucose detection. Biosens Bioelectron. 2017;89:652.

    Article  CAS  PubMed  Google Scholar 

  62. Huang KJ, Liu YJ, Wang HB, Wang YY, Liu YM. Sub-femtomolar DNA detection based on layered molybdenum disulfide/multi-walled carbon nanotube composites, Au nanoparticle and enzyme multiple signal amplification. Biosens Bioelectron. 2014;55:195.

    Article  CAS  PubMed  Google Scholar 

  63. Kamakoti V, Shanmugam NR, Tanak AS, Jagannath B, Prasad S. Investigation of molybdenum-crosslinker interfaces for affinity based electrochemical biosensing applications. Appl Surf Sci. 2018;436:441.

    Article  CAS  ADS  Google Scholar 

  64. Zhou KF, Shen DF, Li X, Chen YH, Hou LR, Zhang YS, Sha JQ. Molybdenum oxide-based metal-organic framework/polypyrrole nanocomposites for enhancing electrochemical detection of dopamine. Talanta. 2020;209:8.

    Article  Google Scholar 

  65. Yan LA, Chang YN, Yin WY, Liu XD, Xiao DB, Xing GM, Zhao LN, Gu ZJ, Zhao YL. Biocompatible and flexible graphene oxide/upconversion nanoparticle hybrid film for optical pH sensing. Phys Chem Chem Phys. 2014;16(4):1576.

    Article  CAS  PubMed  Google Scholar 

  66. Shi XR, Xu ZZ, Liao Q, Wu YS, Gu ZJ, Zheng RH, Fu HB. Aggregation enhanced two-photon fluorescence of organic nanoparticles. Dyes Pigment. 2015;115:211.

    Article  CAS  Google Scholar 

  67. Zhu CF, Zeng ZY, Li H, Li F, Fan CH, Zhang H. Single-layer MoS2-based nanoprobes for homogeneous detection of biomolecules. J Am Chem Soc. 2013;135(16):5998.

    Article  CAS  PubMed  Google Scholar 

  68. Yin WY, Dong XH, Yu J, Pan J, Yao ZY, Gu ZJ, Zhao YL. MoS2-nanosheet-assisted coordination of metal ions with porphyrin for rapid detection and removal of cadmium ions in aqueous media. ACS Appl Mater Interfaces. 2017;9(25):21362.

    Article  CAS  PubMed  Google Scholar 

  69. Balendhran S, Walia S, Alsaif M, Nguyen EP, Ou JZ, Zhuiykov S, Sriram S, Bhaskaran M, Kalantar-Zadeh K. Field effect biosensing platform based on 2D alpha-MoO3. ACS Nano. 2013;7(11):9753.

    Article  CAS  PubMed  Google Scholar 

  70. Ge J, Ou EC, Yu RQ, Chu X. A novel aptameric nanobiosensor based on the self-assembled DNA–MoS2 nanosheet architecture for biomolecule detection. J Mat Chem B. 2014;2(6):625.

    Article  CAS  Google Scholar 

  71. Zeng SW, Baillargeat D, Ho HP, Yong KT. Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications. Chem Soc Rev. 2014;43(10):3426.

    Article  CAS  PubMed  Google Scholar 

  72. Zeng SW, Hu SY, Xia J, Anderson T, Dinh XQ, Meng XM, Coquet P, Yong KT. Graphene–MoS2 hybrid nanostructures enhanced surface plasmon resonance biosensors. Sens Actuator B-Chem. 2015;207:801.

    Article  CAS  Google Scholar 

  73. Willets KA, Van Duyne RP. Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem. 2007;58:267.

    Article  CAS  PubMed  ADS  Google Scholar 

  74. Hassanzadeh J, Khataee A. Ultrasensitive chemiluminescent biosensor for the detection of cholesterol based on synergetic peroxidase-like activity of MoS2 and graphene quantum dots. Talanta. 2018;178:992.

    Article  CAS  PubMed  Google Scholar 

  75. Zang Y, Lei JP, Hao Q, Ju HX. CdS/MoS2 heterojunction-based photoelectrochemical DNA biosensor via enhanced chemiluminescence excitation. Biosens Bioelectron. 2016;77:557.

    Article  CAS  PubMed  Google Scholar 

  76. He Y, Li JH, Liu Y. Reusable and dual-potential responses electrogenerated chemiluminescence biosensor for synchronously cytosensing and dynamic cell surface N-Glycan evaluation. Anal Chem. 2015;87(19):9777.

    Article  CAS  PubMed  Google Scholar 

  77. Richter MM. Electrochemiluminescence (ECL). Chem Rev. 2004;104(6):3003.

    Article  CAS  PubMed  Google Scholar 

  78. Xiao DB, Liu LL, Gu ZJ. Dual-functional tris(2-phenylpyridine) iridium nanowires: luminescent and electrochemiluminescent sensors. Sens Lett. 2013;11(2):337.

    Article  Google Scholar 

  79. Liu Y, Nie YX, Wang MK, Zhang Q, Ma Q. Distance-dependent plasmon-enhanced electrochemiluminescence biosensor based on MoS2 nanosheets. Biosens Bioelectron. 2020;148:7.

    Article  Google Scholar 

  80. Zhao M, Chen AY, Huang D, Chai YQ, Zhuo Y, Yuan R. MoS2 quantum dots as new electrochemiluminescence emitters for ultrasensitive bioanalysis of lipopolysaccharide. Anal Chem. 2017;89(16):8335.

    Article  CAS  PubMed  Google Scholar 

  81. Wang L, Liu DQ, Sun YL, Su JJ, Jin BW, Geng L, Song YY, Huang X, Yang M. Signal-on electrochemiluminescence of self-ordered molybdenum oxynitride nanotube arrays for label-free cytosensing. Anal Chem. 2018;90(18):10858.

    Article  CAS  PubMed  Google Scholar 

  82. Lee J, Dak P, Lee Y, Park H, Choi W, Alam MA, Kim S. Two-dimensional layered MoS2 biosensors enable highly sensitive detection of biomolecules. Sci Rep. 2014;4:7.

    Article  CAS  Google Scholar 

  83. Syu YC, Hsu WE, Lin CT. Review-field-effect transistor biosensing: devices and clinical applications. ECS J Solid State Sci Technol. 2018;7(7):Q3196.

    Article  CAS  Google Scholar 

  84. Ganatra R, Zhang Q. Few-layer MoS2: a promising layered semiconductor. ACS Nano. 2014;8(5):4074.

    Article  CAS  PubMed  Google Scholar 

  85. Wei JQ, Zhao ZH, Lan KB, Wang Z, Qin GX, Chen RB. Highly sensitive detection of multiple proteins from single cells by MoS2-FET biosensors. Talanta. 2022;236:8.

    Article  Google Scholar 

  86. Shariati M, Sadeghi M, Shojaei SHR. Sensory analysis of hepatitis B virus DNA for medicinal clinical diagnostics based on molybdenum doped ZnO nanowires field effect transistor biosensor; a comparative study to PCR test results. Anal Chim Acta. 2022;1195:9.

    Article  Google Scholar 

  87. Yu Z, Park Y, Chen L, Zhao B, Jung YM, Cong Q. Preparation of a superhydrophobic and peroxidase-like activity array chip for H2O2 sensing by surface-enhanced raman scattering. ACS Appl Mater Interfaces. 2015;7(42):23472.

    Article  CAS  PubMed  Google Scholar 

  88. Singha SS, Mondal S, Bhattacharya TS, Das L, Sen K, Satpati B, Das K, Singha A. Au nanoparticles functionalized 3D-MoS2 nanoflower: an efficient SERS matrix for biomolecule sensing. Biosens Bioelectron. 2018;119:10.

    Article  CAS  PubMed  Google Scholar 

  89. Yu J, Ma DQ, Mei LQ, Gao Q, Yin WY, Zhang X, Yan L, Gu ZJ, Ma XY, Zhao YL. Peroxidase-like activity of MoS2 nanoflakes with different modifications and their application for H2O2 and glucose detection. J Mat Chem B. 2018;6(3):487.

    Article  CAS  ADS  Google Scholar 

  90. Guo XR, Wang Y, Wu FY, Ni YN, Kokot S. A colorimetric method of analysis for trace amounts of hydrogen peroxide with the use of the nano-properties of molybdenum disulfide. Analyst. 2015;140(4):1119.

    Article  CAS  PubMed  ADS  Google Scholar 

  91. Zhao Y, Wei C, Chen X, Liu J, Yu Q, Liu Y, Liu J. Drug delivery system based on near-infrared light-responsive molybdenum disulfide nanosheets controls the high-efficiency release of dexamethasone to inhibit inflammation and treat osteoarthritis. ACS Appl Mater Interfaces. 2019;11(12):11587.

    Article  CAS  PubMed  Google Scholar 

  92. Dong X, Yin W, Zhang X, Zhu S, He X, Yu J, Xie J, Guo Z, Yan L, Liu X, Wang Q, Gu Z, Zhao Y. Intelligent MoS2 nanotheranostic for targeted and enzyme-/pH-/NIR-responsive drug delivery to overcome cancer chemotherapy resistance guided by PET imaging. ACS Appl Mater Interfaces. 2018;10(4):4271.

    Article  CAS  PubMed  Google Scholar 

  93. Zheng H, Ma B, Shi Y, Dai Q, Li D, Ren E, Zhu J, Liu J, Chen H, Yin Z, Chu C, Wang X, Liu G. Tumor microenvironment-triggered MoS2@GA-Fe nanoreactor: a self-rolling enhanced chemodynamic therapy and hydrogen sulfide treatment for hepatocellular carcinoma. Chem Eng J. 2021;406:126888.

    Article  CAS  Google Scholar 

  94. Arul NS, Nithya VD. Molybdenum disulfide quantum dots: synthesis and applications. RSC Adv. 2016;6(70):65670.

    Article  CAS  ADS  Google Scholar 

  95. Eda G, Yamaguchi H, Voiry D, Fujita T, Chen M, Chhowalla M. Photoluminescence from chemically exfoliated MoS2. Nano Lett. 2011;11(12):5111.

    Article  CAS  PubMed  ADS  Google Scholar 

  96. Wang N, Wei F, Qi Y, Li H, Lu X, Zhao G, Xu Q. Synthesis of strongly fluorescent molybdenum disulfide nanosheets for cell-targeted labeling. ACS Appl Mater Interfaces. 2014;6(22):19888.

    Article  CAS  PubMed  Google Scholar 

  97. Yuan WZ, Lu P, Chen S, Lam JWY, Wang Z, Liu Y, Kwok HS, Ma Y, Tang BZ. Changing the behavior of chromophores from aggregation-caused quenching to aggregation-induced emission: development of highly efficient light emitters in the solid state. Adv Mater. 2010;22(19):2159.

    Article  CAS  PubMed  Google Scholar 

  98. Wang J, Xu M, Wang K, Chen Z. Stable mesoporous silica nanoparticles incorporated with MoS2 and AIE for targeted fluorescence imaging and photothermal therapy of cancer cells. Colloids Surf, B. 2019;174:324.

    Article  CAS  Google Scholar 

  99. Liang K, Qu S, Li Y, Tan L, Shang L. Surface chemistry regulates the optical properties and cellular interactions of ultrasmall MoS2 quantum dots for biomedical applications. J Mater Chem B. 2021;9(28):5682.

    Article  CAS  PubMed  Google Scholar 

  100. Wang N, Tang D, Zou H, Jia S, Sun Z, Yang X, Peng J. Synthesis of molybdenum oxide quantum dots with better dispersity and bio-imaging ability by reduction method. Opt Mater. 2018;83:19.

    Article  CAS  ADS  Google Scholar 

  101. Denk W, Strickler James H, Webb WW. Two-photon laser scanning fluorescence microscopy. Science. 1990;248(4951):73.

    Article  CAS  PubMed  ADS  Google Scholar 

  102. Kim HJ, Han JH, Kim MK, Lim CS, Kim HM, Cho BR. Dual-color imaging of sodium/calcium ion activities with two-photon fluorescent probes. Angew Chem Int Ed. 2010;49(38):6786.

    Article  CAS  Google Scholar 

  103. Gu W, Yan Y, Cao X, Zhang C, Ding C, Xian Y. A facile and one-step ethanol-thermal synthesis of MoS2 quantum dots for two-photon fluorescence imaging. J Mater Chem B. 2016;4(1):27.

    Article  CAS  PubMed  Google Scholar 

  104. Kim C, Favazza C, Wang LV. In vivo photoacoustic tomography of chemicals: high-resolution functional and molecular optical imaging at new depths. Chem Rev. 2010;110(5):2756.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Ntziachristos V, Razansky D. Molecular imaging by means of multispectral optoacoustic tomography (MSOT). Chem Rev. 2010;110(5):2783.

    Article  CAS  PubMed  Google Scholar 

  106. Mehrmohammadi M, Joon Yoon S, Yeager D, Emelianov YS. Photoacoustic imaging for cancer detection and staging. Curr Mol Imaging. 2013;2(1):89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Dutta RR, Devi R, Dutta HS, Gogoi S, Khan R, Barua S. Two-dimensional nanostructures for biomedical technology. Amsterdam: Elsevier; 2020. p. 89.

    Google Scholar 

  108. Jiang H, Du Y, Chen L, Qian M, Yang Y, Huo T, Yan X, Ye T, Han B, Wang Y, Huang R. Multimodal theranostics augmented by transmembrane polymer-sealed nano-enzymatic porous MoS2 nanoflowers. Int J Pharm. 2020;586:119606.

    Article  CAS  PubMed  Google Scholar 

  109. Chen J, Liu C, Hu D, Wang F, Wu H, Gong X, Liu X, Song L, Sheng Z, Zheng H. Single-layer MoS2 nanosheets with amplified photoacoustic effect for highly sensitive photoacoustic imaging of orthotopic brain tumors. Adv Funct Mater. 2016;26(47):8715.

    Article  CAS  Google Scholar 

  110. Zhou Z, Li B, Shen C, Wu D, Fan H, Zhao J, Li H, Zeng Z, Luo Z, Ma L, Tan C. Metallic 1T phase enabling MoS2 nanodots as an efficient agent for photoacoustic imaging guided photothermal therapy in the near-infrared-II Window. Small. 2020;16(43):2004173.

    Article  CAS  Google Scholar 

  111. Gong F, Cheng L, Yang N, Jin Q, Tian L, Wang M, Li Y, Liu Z. Bimetallic oxide MnMoOX nanorods for in vivo photoacoustic imaging of GSH and tumor-specific photothermal therapy. Nano Lett. 2018;18(9):6037.

    Article  CAS  PubMed  ADS  Google Scholar 

  112. Wang L, Yang PP, Zhao XX, Wang H. Self-assembled nanomaterials for photoacoustic imaging Nanoscale. 2016;8(5):2488.

    CAS  PubMed  Google Scholar 

  113. Ni D, Jiang D, Valdovinos HF, Ehlerding EB, Yu B, Barnhart TE, Huang P, Cai W. Bioresponsive polyoxometalate cluster for redox-activated photoacoustic imaging-guided photothermal cancer therapy. Nano Lett. 2017;17(5):3282.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  114. Shi J, Zhang H, Chen Z, Xu L, Zhang Z. A multi-functional nanoplatform for efficacy tumor theranostic applications. Asian J Pharm Sci. 2017;12(3):235.

    Article  PubMed  Google Scholar 

  115. Yin W, Yan L, Yu J, Tian G, Zhou L, Zheng X, Zhang X, Yong Y, Li J, Gu Z, Zhao Y. High-throughput synthesis of single-layer MoS2 nanosheets as a near-infrared photothermal-triggered drug delivery for effective cancer therapy. ACS Nano. 2014;8(7):6922.

    Article  CAS  PubMed  Google Scholar 

  116. Li B, Wang X, Wu X, He G, Xu R, Lu X, Wang FR, Parkin IP. Phase and morphological control of MoO3−x nanostructures for efficient cancer theragnosis therapy. Nanoscale. 2017;9(31):11012.

    Article  CAS  PubMed  Google Scholar 

  117. Wang J, Tan X, Pang X, Liu L, Tan F, Li N. MoS2 quantum dot@polyaniline inorganic–organic nanohybrids for in vivo dual-modal imaging guided synergistic photothermal/radiation therapy. ACS Appl Mater Interfaces. 2016;8(37):24331.

    Article  CAS  PubMed  Google Scholar 

  118. Cheng L, Liu J, Gu X, Gong H, Shi X, Liu T, Wang C, Wang X, Liu G, Xing H, Bu W, Sun B, Liu Z. PEGylated WS2 nanosheets as a multifunctional theranostic agent for in vivo dual-modal CT/photoacoustic imaging guided photothermal therapy. Adv Mater. 2014;26(12):1886.

    Article  CAS  PubMed  Google Scholar 

  119. Huang X, El-Sayed IH, Qian W, El-Sayed MA. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc. 2006;128(6):2115.

    Article  CAS  PubMed  Google Scholar 

  120. Cheng L, Wang C, Feng L, Yang K, Liu Z. Functional nanomaterials for phototherapies of cancer. Chem Rev. 2014;114(21):10869.

    Article  CAS  PubMed  Google Scholar 

  121. Schwarz G, Belaidi AA, Sigel A, Sigel H, Sigel RKO. Interrelations between essential metal ions and human diseases. Dordrecht: Springer; 2013. 116.

    Google Scholar 

  122. Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A. Single-layer MoS2 transistors. Nat Nanotechnol. 2011;6(3):147.

    Article  CAS  PubMed  ADS  Google Scholar 

  123. Chou SS, Kaehr B, Kim J, Foley BM, De M, Hopkins PE, Huang J, Brinker CJ, Dravid VP. Chemically exfoliated MoS2 as near-infrared photothermal agents. Angew Chem Int Ed. 2013;52(15):4160.

    Article  CAS  Google Scholar 

  124. Liu T, Chao Y, Gao M, Liang C, Chen Q, Song G, Cheng L, Liu Z. Ultra-small MoS2 nanodots with rapid body clearance for photothermal cancer therapy. Nano Res. 2016;9(10):3003.

    Article  CAS  Google Scholar 

  125. Fu C, Tan L, Ren X, Wu Q, Shao H, Ren J, Zhao Y, Meng X. Interlayer expansion of 2D MoS2 nanosheets for highly improved photothermal therapy of tumors in vitro and in vivo. Chem Commun. 2018;54(99):13989.

    Article  CAS  Google Scholar 

  126. Feng W, Chen L, Qin M, Zhou X, Zhang Q, Miao Y, Qiu K, Zhang Y, He C. Flower-like PEGylated MoS2 nanoflakes for near-infrared photothermal cancer therapy. Sci Rep. 2015;5(1):17422.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  127. Tan L, Wang S, Xu K, Liu T, Liang P, Niu M, Fu C, Shao H, Yu J, Ma T, Ren X, Li H, Dou J, Ren J, Meng X. Layered MoS2 hollow spheres for highly-efficient photothermal therapy of rabbit liver orthotopic transplantation tumors. Small. 2016;12(15):2046.

    Article  CAS  PubMed  Google Scholar 

  128. Huang Z, Qi Y, Yu D, Zhan J. Radar-like MoS2 nanoparticles as a highly efficient 808 nm laser-induced photothermal agent for cancer therapy. RSC Adv. 2016;6(37):31031.

    Article  CAS  ADS  Google Scholar 

  129. Wu G, Wu Z, Liu L, Cui W, Du D, Xue Y. NIR light responsive MoS2 nanomaterials for rapid sterilization: optimum photothermal effect via sulfur vacancy modulation. Chem Eng J. 2022;427:132007.

    Article  CAS  Google Scholar 

  130. Wang S, Li K, Chen Y, Chen H, Ma M, Feng J, Zhao Q, Shi J. Biocompatible PEGylated MoS2 nanosheets: controllable bottom-up synthesis and highly efficient photothermal regression of tumor. Biomaterials. 2015;39:206.

    Article  PubMed  Google Scholar 

  131. Rajasekar S, Martin EM, Kuppusamy S, Vetrivel C. Chitosan coated molybdenum sulphide nanosheet incorporated with tantalum oxide nanomaterials for improving cancer photothermal therapy. Arabian J Chem. 2020;13(3):4741.

    Article  CAS  Google Scholar 

  132. Xie M, Yang N, Cheng J, Yang M, Deng T, Li Y, Feng C. Layered MoS2 nanosheets modified by biomimetic phospholipids: Enhanced stability and its synergistic treatment of cancer with chemo-photothermal therapy. Colloids Surf, B. 2020;187:110631.

    Article  CAS  Google Scholar 

  133. Song C, Li Z, Chen Y, Zheng C, Hu N, Guo C. Macrophage-engulfed MoS2 for active targeted photothermal therapy. New J Chem. 2019;43(4):1838.

    Article  CAS  Google Scholar 

  134. Zhang Q, Huang W, Yang C, Wang F, Song C, Gao Y, Qiu Y, Yan M, Yang B, Guo C. The theranostic nanoagent Mo2C for multi-modal imaging-guided cancer synergistic phototherapy. Biomater Sci. 2019;7(7):2729.

    Article  CAS  PubMed  Google Scholar 

  135. Li Y, Wu J, Williams GR, Niu S, Zhou J, Yang Y, Zhang X, Fu Z, Li D, Zhu L-M. Synergistic chemo-photothermal suppression of cancer by melanin decorated MoOx nanosheets. ACS Appl Bio Mater. 2019;2(10):4356.

    Article  CAS  PubMed  Google Scholar 

  136. Chen J, Ye Z, Yang F, Yin Y. Plasmonic nanostructures for photothermal conversion. Small Sci. 2021;1(2):2000055.

    Article  CAS  Google Scholar 

  137. Liu W, Li X, Li W, Zhang Q, Bai H, Li J, Xi G. Highly stable molybdenum dioxide nanoparticles with strong plasmon resonance are promising in photothermal cancer therapy. Biomaterials. 2018;163:43.

    Article  CAS  PubMed  Google Scholar 

  138. Song G, Shen J, Jiang F, Hu R, Li W, An L, Zou R, Chen Z, Qin Z, Hu J. Hydrophilic molybdenum oxide nanomaterials with controlled morphology and strong plasmonic absorption for photothermal ablation of cancer cells. ACS Appl Mater Interfaces. 2014;6(6):3915.

    Article  CAS  PubMed  Google Scholar 

  139. Yin W, Bao T, Zhang X, Gao Q, Yu J, Dong X, Yan L, Gu Z, Zhao Y. Biodegradable MoOx nanoparticles with efficient near-infrared photothermal and photodynamic synergetic cancer therapy at the second biological window. Nanoscale. 2018;10(3):1517.

    Article  CAS  PubMed  Google Scholar 

  140. Lou Z, Gu Q, Xu L, Liao Y, Xue C. Surfactant-free synthesis of plasmonic tungsten oxide nanowires with visible-light-enhanced hydrogen generation from ammonia borane. Chem Asian J. 2015;10(6):1291.

    Article  CAS  PubMed  Google Scholar 

  141. Chen Y, Gao M, Zhang L, Ha E, Hu X, Zou R, Yan L, Hu J. Tumor microenvironment responsive biodegradable Fe-doped MoOx nanowires for magnetic resonance imaging guided photothermal-enhanced chemodynamic synergistic antitumor therapy. Adv Healthcare Mater. 2021;10(6):2001665.

    Article  CAS  Google Scholar 

  142. Chen Y, Khan AR, Yu D, Zhai Y, Ji J, Shi Y, Zhai G. Pluronic F127-functionalized molybdenum oxide nanosheets with pH-dependent degradability for chemo-photothermal cancer therapy. J Colloid Interface Sci. 2019;553:567.

    Article  CAS  PubMed  ADS  Google Scholar 

  143. Rohaizad N, Mayorga-Martinez CC, Fojtů M, Latiff NM, Pumera M. Two-dimensional materials in biomedical, biosensing and sensing applications. Chem Soc Rev. 2021;50(1):619.

    Article  CAS  PubMed  Google Scholar 

  144. Kapri S, Bhattacharyya S. Molybdenum sulfide–reduced graphene oxide p–n heterojunction nanosheets with anchored oxygen generating manganese dioxide nanoparticles for enhanced photodynamic therapy. Chem Sci. 2018;9(48):8982.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Wang J, Liu L, You Q, Song Y, Sun Q, Wang Y, Cheng Y, Tan F, Li N. All-in-one theranostic nanoplatform based on hollow MoSx for photothermally-maneuvered oxygen self-enriched photodynamic therapy. Theranostics. 2018;8(4):955.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Lee CT, Mace T, Repasky EA. Hypoxia-driven immunosuppression: a new reason to use thermal therapy in the treatment of cancer. Int J Hyperthermia. 2010;26(3):232.

    Article  PubMed  PubMed Central  Google Scholar 

  147. Qi Y, Yuan Y, Qian Z, Ma X, Yuan W, Song Y. Injectable and self-healing polysaccharide hydrogel loading molybdenum disulfide nanoflakes for synergistic photothermal-photodynamic therapy of breast cancer. Macromol Biosci. 2022;22(9):2200161.

    Article  CAS  Google Scholar 

  148. Liu T, Wang C, Cui W, Gong H, Liang C, Shi X, Li Z, Sun B, Liu Z. Combined photothermal and photodynamic therapy delivered by PEGylated MoS2 nanosheets. Nanoscale. 2014;6(19):11219.

    Article  CAS  PubMed  ADS  Google Scholar 

  149. Odda AH, Xu Y, Lin J, Wang G, Ullah N, Zeb A, Liang K, Wen LP, Xu AW. Plasmonic MoO3−x nanoparticles incorporated in Prussian blue frameworks exhibit highly efficient dual photothermal/photodynamic therapy. J Mater Chem B. 2019;7(12):2032.

    Article  CAS  PubMed  Google Scholar 

  150. Zhang C, Bu W, Ni D, Zhang S, Li Q, Yao Z, Zhang J, Yao H, Wang Z, Shi J. Synthesis of iron nanometallic glasses and their application in cancer therapy by a localized Fenton reaction. Angew Chem Int Ed. 2016;55(6):2101.

    Article  CAS  Google Scholar 

  151. Ren C, Li D, Zhou Q, Hu X. Mitochondria-targeted TPP–MoS2 with dual enzyme activity provides efficient neuroprotection through M1/M2 microglial polarization in an Alzheimer’s disease model. Biomaterials. 2020;232:119752.

    Article  CAS  PubMed  Google Scholar 

  152. Liang L, Duan Y, Xiong Y, Zuo W, Ye F, Zhao S. Synergistic cocatalytic effect of MoO3 and creatinine on Cu–Fenton reactions for efficient decomposition of H2O2. Mater Today Chem. 2022;24:100805.

    Article  CAS  Google Scholar 

  153. Mei L, Ma D, Gao Q, Zhang X, Fu W, Dong X, Xing G, Yin W, Gu Z, Zhao Y. Glucose-responsive cascaded nanocatalytic reactor with self-modulation of the tumor microenvironment for enhanced chemo-catalytic therapy. Mater Horiz. 2020;7(7):1834.

    Article  CAS  Google Scholar 

  154. Maji SK, Yu S, Chung K, Sekkarapatti Ramasamy M, Lim JW, Wang J, Lee H, Kim DH. Synergistic nanozymetic activity of hybrid gold bipyramid–molybdenum disulfide core@shell nanostructures for two-photon imaging and anticancer therapy. ACS Appl Mater Interfaces. 2018;10(49):42068.

    Article  CAS  PubMed  Google Scholar 

  155. Zhang C, Bu W, Ni D, Zuo C, Cheng C, Li Q, Zhang L, Wang Z, Shi J. A polyoxometalate cluster paradigm with self-adaptive electronic structure for acidity/reducibility-specific photothermal conversion. J Am Chem Soc. 2016;138(26):8156.

    Article  CAS  PubMed  Google Scholar 

  156. Liu G, Zhu J, Guo H, Sun A, Chen P, Xi L, Huang W, Song X, Dong X. Mo2C-derived polyoxometalate for nir-ii photoacoustic imaging-guided chemodynamic/photothermal synergistic therapy. Angew Chem Int Ed. 2019;58(51):18641.

    Article  CAS  Google Scholar 

  157. Kouranos V, Dimopoulos G, Vassias A, Syrigos KN. Chemotherapy-induced neutropenia in lung cancer patients: the role of antibiotic prophylaxis. Cancer Lett. 2011;313(1):9.

    Article  CAS  PubMed  Google Scholar 

  158. Herweijer H, Wolff JA. Progress and prospects: naked DNA gene transfer and therapy. Gene Ther. 2003;10(6):453.

    Article  CAS  PubMed  Google Scholar 

  159. Han SO, Mahato RI, Sung YK, Kim SW. Development of biomaterials for gene therapy. Mol Ther. 2000;2(4):302.

    Article  CAS  PubMed  Google Scholar 

  160. Chen X, McDonald AR. Functionalization of two-dimensional transition-metal dichalcogenides. Adv Mater. 2016;28(27):5738.

    Article  CAS  PubMed  Google Scholar 

  161. Hadipour Moghaddam SP, Saikia J, Yazdimamaghani M, Ghandehari H. Redox-responsive polysulfide-based biodegradable organosilica nanoparticles for delivery of bioactive agents. ACS Appl Mater Interfaces. 2017;9(25):21133.

    Article  CAS  PubMed  Google Scholar 

  162. Ge H, Du J, Zheng J, Xu N, Yao Q, Long S, Fan J, Peng X. Effective treatment of cisplatin-resistant ovarian tumors with a MoS2-based sonosensitizer and nanoenzyme capable of reversing the resistant-microenvironment and enhancing ferroptosis and apoptosis. Chem Eng J. 2022;446:137040.

    Article  CAS  Google Scholar 

  163. Liu J, Zheng J, Nie H, Chen H, Li B, Jia L. Co-delivery of erlotinib and doxorubicin by MoS2 nanosheets for synergetic photothermal chemotherapy of cancer. Chem Eng J. 2020;381:122541.

    Article  CAS  Google Scholar 

  164. Kim J, Kim H, Kim WJ. Single-layered MoS2–PEI–PEG nanocomposite-mediated gene delivery controlled by photo and redox stimuli. Small. 2016;12(9):1184.

    Article  CAS  PubMed  Google Scholar 

  165. Tang Y, Wang S, Li Y, Yuan C, Zhang J, Xu Z, Hu Y, Shi H, Wang S. Simultaneous glutamine metabolism and PD-L1 inhibition to enhance suppression of triple-negative breast cancer. J Nanobiotechnol. 2022;20(1):216.

    Article  CAS  Google Scholar 

  166. Yin F, Anderson T, Panwar N, Zhang K, Tjin SC, Ng BK, Yoon HS, Qu J, Yong KT. Functionalized MoS2 nanosheets as multi-gene delivery vehicles for in vivo pancreatic cancer therapy. Nanotheranostics. 2018;2(4):371.

    Article  PubMed  PubMed Central  Google Scholar 

  167. Zhao Z, Yang P, Zhang X, ShashaYang LJ, Fan J, Zhang B. Combination of chemotherapy and photothermal methods for in vitro ablation of MCF-7 cancer cells using crinkly core–shell structure MoS2/C@SiO2 nanospheres. Adv Powder Technol. 2022;33(2):103388.

    Article  CAS  Google Scholar 

  168. Tomane S, Wilhelm C, Boujday S, Fromain A, Miche A, Bourdreux F, Dolbecq A, Mialane P, Vallée A. Gold/Polyoxometalate core/shell nanoparticles for combined chemotherapy–photothermal cancer therapy. ACS Appl Nano Mater. 2021;4(3):2339.

    Article  CAS  Google Scholar 

  169. Zhang Y, He Z, Yang F, Ye C, Xu X, Wang S, Zhang L, Zou D. Novel PVA-based microspheres Co-loaded with photothermal transforming agent and chemotherapeutic for colorectal cancer treatment. Pharmaceutics. 2021;13(7):984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Zhang K, Zhao Y, Wang L, Zhao L, Liu X, He S. NIR-responsive transdermal delivery of atenolol based on polyacrylamide-modified MoS2 nanoparticles. Inorg Chem Commun. 2020;122:108277.

    Article  CAS  Google Scholar 

  171. Zhang X, Zhao Z, Yang P, Liu W, Fan J, Zhang B, Yin S. MoS2@C nanosphere as near infrared / pH dual response platform for chemical photothermal combination treatment. Colloids Surf, B. 2020;192:111054.

    Article  CAS  Google Scholar 

  172. Wu MX, Yang YW. Metal–organic framework (MOF)-based drug/cargo delivery and cancer therapy. Adv Mater. 2017;29(23):1606134.

    Article  Google Scholar 

  173. Yang S, Li D, Chen L, Zhou X, Fu L, You Y, You Z, Kang L, Li M, He C. Coupling metal organic frameworks with molybdenum disulfide nanoflakes for targeted cancer theranostics. Biomater Sci. 2021;9(9):3306.

    Article  CAS  PubMed  Google Scholar 

  174. Shao T, Wen J, Zhang Q, Zhou Y, Liu L, Yuwen L, Tian Y, Zhang Y, Tian W, Su Y, Teng Z, Lu G, Xu J. NIR photoresponsive drug delivery and synergistic chemo-photothermal therapy by monodispersed-MoS2-nanosheets wrapped periodic mesoporous organosilicas. J Mater Chem B. 2016;4(47):7708.

    Article  CAS  PubMed  Google Scholar 

  175. Zhao W, Li A, Chen C, Quan F, Sun L, Zhang A, Zheng Y, Liu J. Transferrin-decorated, MoS2-capped hollow mesoporous silica nanospheres as a self-guided chemo–photothermal nanoplatform for controlled drug release and thermotherapy. J Mater Chem B. 2017;5(35):7403.

    Article  CAS  PubMed  Google Scholar 

  176. Geng B, Qin H, Zheng F, Shen W, Li P, Wu K, Wang X, Li X, Pan D, Shen L. Carbon dot-sensitized MoS2 nanosheet heterojunctions as highly efficient NIR photothermal agents for complete tumor ablation at an ultralow laser exposure. Nanoscale. 2019;11(15):7209.

    Article  CAS  PubMed  Google Scholar 

  177. Hu H, Zhong X, Yang S, Fu H. Tough and stretchable Fe3O4/MoS2/PAni composite hydrogels with conductive and magnetic properties. Compos B. 2020;182:107623.

    Article  CAS  Google Scholar 

  178. Yang Y, Wu H, Liu B, Liu Z. Tumor microenvironment-responsive dynamic inorganic nanoassemblies for cancer imaging and treatment. Adv Drug Delivery Rev. 2021;179:114004.

    Article  CAS  Google Scholar 

  179. Yang Y, Gong B, Yang Y, Xie A, Shen Y, Zhu M. Construction and synergistic anticancer efficacy of magnetic targeting cabbage-like Fe3O4@MoS2@ZnO drug carriers. J Mater Chem B. 2018;6(22):3792.

    Article  CAS  PubMed  Google Scholar 

  180. Zheng Y, Wang W, Zhao J, Wu C, Ye C, Huang M, Wang S. Preparation of injectable temperature-sensitive chitosan-based hydrogel for combined hyperthermia and chemotherapy of colon cancer. Carbohydr Polym. 2019;222:115039.

    Article  CAS  PubMed  Google Scholar 

  181. Dominska M, Dykxhoorn DM. Breaking down the barriers: siRNA delivery and endosome escape. J Cell Sci. 2010;123(8):1183.

    Article  CAS  PubMed  Google Scholar 

  182. Jiang F, Ding B, Liang S, Zhao Y, Cheng Z, Xing B, Ma PA, Lin J. Intelligent MoS2–CuO heterostructures with multiplexed imaging and remarkably enhanced antitumor efficacy via synergetic photothermal therapy/ chemodynamic therapy/ immunotherapy. Biomaterials. 2021;268:120545.

    Article  CAS  PubMed  Google Scholar 

  183. Fisher RA, Gollan B, Helaine S. Persistent bacterial infections and persister cells. Nat Rev Microbiol. 2017;15(8):453.

    Article  CAS  PubMed  Google Scholar 

  184. Chen F, Luo Y, Liu X, Zheng Y, Han Y, Yang D, Wu S. 2D Molybdenum sulfide-based materials for photo-excited antibacterial application. Adv Healthcare Mater. 2022;11(13):2200360.

    Article  CAS  Google Scholar 

  185. Shi J, Li J, Wang Y, Cheng J, Zhang CY. Recent advances in MoS2-based photothermal therapy for cancer and infectious disease treatment. J Mater Chem B. 2020;8(27):5793.

    Article  CAS  PubMed  Google Scholar 

  186. Sethulekshmi AS, Saritha A, Joseph K, Aprem AS, Sisupal SB. MoS2 based nanomaterials: advanced antibacterial agents for future. J Controlled Release. 2022;348:158.

    Article  CAS  Google Scholar 

  187. Ali SR, De M. Defect-engineered functionalized MoS2 quantum dots with enhanced antibacterial activity. ACS Appl Nano Mater. 2023;6(3):2193.

    Article  CAS  Google Scholar 

  188. Lv R, Liang YQ, Li ZY, Zhu SL, Cui ZD, Wu SL. Flower-like CuS/graphene oxide with photothermal and enhanced photocatalytic effect for rapid bacteria-killing using visible light. Rare Met. 2022;41(2):639.

    Article  CAS  Google Scholar 

  189. Yan L, Mu J, Ma P, Li Q, Yin P, Liu X, Cai Y, Yu H, Liu J, Wang G, Liu A. Gold nanoplates with superb photothermal efficiency and peroxidase-like activity for rapid and synergistic antibacterial therapy. Chem Commun. 2021;57(9):1133.

    Article  CAS  Google Scholar 

  190. Liu X, Duan G, Li W, Zhou Z, Zhou R. Membrane destruction-mediated antibacterial activity of tungsten disulfide (WS2). RSC Adv. 2017;7(60):37873.

    Article  CAS  ADS  Google Scholar 

  191. Feng Z, Liu X, Tan L, Cui Z, Yang X, Li Z, Zheng Y, Yeung KWK, Wu S. Electrophoretic deposited stable chitosan@MoS2 coating with rapid in situ bacteria-killing ability under dual-light irradiation. Small. 2018;14(21):1704347.

    Article  Google Scholar 

  192. Yuan Z, Tao B, He Y, Liu J, Lin C, Shen X, Ding Y, Yu Y, Mu C, Liu P, Cai K. Biocompatible MoS2/PDA-RGD coating on titanium implant with antibacterial property via intrinsic ROS-independent oxidative stress and NIR irradiation. Biomaterials. 2019;217:119290.

    Article  CAS  PubMed  Google Scholar 

  193. Zhang W, Shi S, Wang Y, Yu S, Zhu W, Zhang X, Zhang D, Yang B, Wang X, Wang J. Versatile molybdenum disulfide based antibacterial composites for in vitro enhanced sterilization and in vivo focal infection therapy. Nanoscale. 2016;8(22):11642.

    Article  CAS  PubMed  ADS  Google Scholar 

  194. Liu C, Kong D, Hsu PC, Yuan H, Lee HW, Liu Y, Wang H, Wang S, Yan K, Lin D, Maraccini PA, Parker KM, Boehm AB, Cui Y. Rapid water disinfection using vertically aligned MoS2 nanofilms and visible light. Nat Nanotechnol. 2016;11(12):1098.

    Article  CAS  PubMed  ADS  Google Scholar 

  195. Zhao Y, Jia Y, Xu J, Han L, He F, Jiang X. The antibacterial activities of MoS2 nanosheets towards multi-drug resistant bacteria. Chem Commun. 2021;57(24):2998.

    Article  CAS  Google Scholar 

  196. Mutalik C, Krisnawati DI, Patil SB, Khafid M, Atmojo DS, Santoso P, Lu SC, Wang DY, Kuo TR. Phase-dependent MoS2 nanoflowers for light-driven antibacterial application. ACS Sustain Chem Eng. 2021;9(23):7904.

    Article  CAS  Google Scholar 

  197. Awasthi GP, Adhikari SP, Ko S, Kim HJ, Park CH, Kim CS. Facile synthesis of ZnO flowers modified graphene like MoS2 sheets for enhanced visible-light-driven photocatalytic activity and antibacterial properties. J Alloys Compd. 2016;682:208.

    Article  CAS  Google Scholar 

  198. Priyadharsan A, Shanavas S, Vasanthakumar V, Balamuralikrishnan B, Anbarasan PM. Synthesis and investigation on synergetic effect of rGO-ZnO decorated MoS2 microflowers with enhanced photocatalytic and antibacterial activity. Colloids Surf A. 2018;559:43.

    Article  Google Scholar 

  199. Zhu M, Liu X, Tan L, Cui Z, Liang Y, Li Z, Kwok Yeung KW, Wu S. Photo-responsive chitosan/Ag/MoS2 for rapid bacteria-killing. J Hazard Mater. 2020;383:121122.

    Article  CAS  PubMed  Google Scholar 

  200. Li J, Ma J, Hong L, Yang C. Prominent antibacterial effect of sub 5 nm Cu nanoparticles/MoS2 composite under visible light. Nanotechnology. 2021;33(7):075706.

    Article  ADS  Google Scholar 

  201. Lin YJ, Chou TM, Lin ZH. Multifunctional MoS2 nanocatalysts for water disinfection. ECS Trans. 2018;85(9):47.

    Article  CAS  Google Scholar 

  202. Liu J, Wang Z, Li J, Cao L, Lu Z, Zhu D. Structure engineering of MoS2 via simultaneous oxygen and phosphorus incorporation for improved hydrogen evolution. Small. 2020;16(4):1905738.

    Article  CAS  Google Scholar 

  203. Wang C, Li J, Liu X, Cui Z, Chen DF, Li Z, Liang Y, Zhu S, Wu S. The rapid photoresponsive bacteria-killing of Cu-doped MoS2. Biomater Sci. 2020;8(15):4216.

    Article  CAS  PubMed  Google Scholar 

  204. Desai N, Mali S. Chemically grown MoO3 nanorods for antibacterial activity study. J Nanomed Nanotechnol. 2015;06:1466.

    Article  Google Scholar 

  205. Zhang Y, Li D, Tan J, Chang Z, Liu X, Ma W, Xu Y. Near-infrared regulated nanozymatic/photothermal/photodynamic triple-therapy for combating multidrug-resistant bacterial infections via oxygen-vacancy molybdenum trioxide nanodots. Small. 2021;17(1):2005739.

    Article  CAS  Google Scholar 

  206. Yin Q, Tan L, Lang Q, Ke X, Bai L, Guo K, Qiao R, Bai S. Plasmonic molybdenum oxide nanosheets supported silver nanocubes for enhanced near-infrared antibacterial activity: synergism of photothermal effect, silver release and photocatalytic reactions. Appl Catal, B. 2018;224:671.

    Article  CAS  Google Scholar 

  207. Yang YY, Feng HP, Niu CG, Huang DW, Guo H, Liang C, Liu HY, Chen S, Tang N, Li L. Constructing a plasma-based Schottky heterojunction for near-infrared-driven photothermal synergistic water disinfection: synergetic effects and antibacterial mechanisms. Chem Eng J. 2021;426:131902.

    Article  CAS  Google Scholar 

  208. Zhai W, Cao Y, Li Y, Zheng M, Wang Z. MoO3–x QDs/MXene (Ti3C2Tx) self-assembled heterostructure for multifunctional application with antistatic, smoke suppression, and antibacterial on polyester fabric. J Mater Sci. 2022;57(4):2597.

    Article  CAS  ADS  Google Scholar 

  209. Lian Z, Li H, Wu T, Zhao J, Cai S, Yang R. Vapor deposition of MoOx/MoS2 films on silicon wafer with visible-light responsive photocatalytic antibacterial properties. Appl Surf Sci. 2022;606:154874.

    Article  CAS  Google Scholar 

  210. Wang Y, Yao H, Zu Y, Yin W. Biodegradable MoOx@MB incorporated hydrogel as light-activated dressing for rapid and safe bacteria eradication and wound healing. RSC Adv. 2022;12(15):8862.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  211. Ikram M, Abid N, Haider A, Ul-Hamid A, Haider J, Shahzadi A, Nabgan W, Goumri-Said S, Butt AR, Benali KM. Toward efficient dye degradation and the bactericidal behavior of Mo-doped La2O3 nanostructures. Nanoscale Adv. 2022;4(3):926.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  212. Wang Endian CJ. Mo doped cuprorivaite: preparation, antibacterial and cytocompatibility. J Inorg Mater. 2020;36(7):738.

    Article  Google Scholar 

  213. Shi Y, Yin J, Peng Q, Lv X, Li Q, Yang D, Song X, Wang W, Dong X. An acidity-responsive polyoxometalate with inflammatory retention for NIR-II photothermal-enhanced chemodynamic antibacterial therapy. Biomater Sci. 2020;8(21):6093.

    Article  CAS  PubMed  Google Scholar 

  214. Zhu Y, Ma S, Yang Y, Li J, Mei Y, Liu L, Yao T, Wu J. Direct Z-scheme Fe2(MoO4)3/MoO3 heterojunction: photo-Fenton reaction and mechanism comprehension. J Alloys Compd. 2021;873:159830.

    Article  CAS  Google Scholar 

  215. Liu Z, Xu J, Xiang C, Liu Y, Ma L, Hu L. S-scheme heterojunction based on ZnS/CoMoO4 ball-and-rod composite photocatalyst to promote photocatalytic hydrogen production. Appl Surf Sci. 2021;569:150973.

    Article  CAS  Google Scholar 

  216. Umapathy V, Neeraja P, Manikandan A, Ramu P. Synthesis of NiMoO4 nanoparticles by sol–gel method and their structural, morphological, optical, magnetic and photocatlytic properties. T Nonferr Metal Soc. 2017;27(8):1785.

    Article  Google Scholar 

  217. Kokilavani S, Al-Kheraif AA, Thomas AM, Syed A, Elgorban AM, Raju LL, Das A, Khan SS. Novel NiS/Ag2MoO4 heterostructure nanocomposite: synthesis, characterization and superior antibacterial and enhanced photocatalytic activity. Physica E. 2021;133:114767.

    Article  CAS  Google Scholar 

  218. Natarajan K, Dave S, Bajaj HC, Tayade RJ. Enhanced photocatalytic degradation of nitrobenzene using MWCNT/β-ZnMoO4 composites under UV light emitting diodes (LEDs). Mater Today Chem. 2020;17:100331.

    Article  CAS  Google Scholar 

  219. Xia Z, Min J, Zhou S, Ma H, Zhang B, Tang X. Photocatalytic performance and antibacterial mechanism of Cu/Ag-molybdate powder material. Ceram Int. 2021;47(9):12667.

    Article  CAS  Google Scholar 

  220. Yang X, Li J, Liang T, Ma C, Zhang Y, Chen H, Hanagata N, Su H, Xu M. Antibacterial activity of two-dimensional MoS2 sheets. Nanoscale. 2014;6(17):10126.

    Article  CAS  PubMed  ADS  Google Scholar 

  221. Wu R, Ou X, Tian R, Zhang J, Jin H, Dong M, Li J, Liu L. Membrane destruction and phospholipid extraction by using two-dimensional MoS2 nanosheets. Nanoscale. 2018;10(43):20162.

    Article  CAS  PubMed  Google Scholar 

  222. Wu JM, Chang WE, Chang YT, Chang CK. Piezo-catalytic effect on the enhancement of the ultra-high degradation activity in the dark by single- and few-layers MoS2 nanoflowers. Adv Mater. 2016;28(19):3718.

    Article  CAS  PubMed  Google Scholar 

  223. Chou TM, Chan SW, Lin YJ, Yang PK, Liu CC, Lin YJ, Wu JM, Lee JT, Lin ZH. A highly efficient Au–MoS2 nanocatalyst for tunable piezocatalytic and photocatalytic water disinfection. Nano Energy. 2019;57:14.

    Article  CAS  Google Scholar 

  224. Ma D, Xie C, Wang T, Mei L, Zhang X, Guo Z, Yin W. Liquid-phase exfoliation and functionalization of MoS2 nanosheets for effective antibacterial application. ChemBioChem. 2020;21(16):2373.

    Article  CAS  PubMed  Google Scholar 

  225. Huang Y, Gao Q, Li X, Gao Y, Han H, Jin Q, Yao K, Ji J. Ofloxacin loaded MoS2 nanoflakes for synergistic mild-temperature photothermal/antibiotic therapy with reduced drug resistance of bacteria. Nano Res. 2020;13(9):2340.

    Article  CAS  Google Scholar 

  226. Gao Q, Zhang X, Yin W, Ma D, Xie C, Zheng L, Dong X, Mei L, Yu J, Wang C, Gu Z, Zhao Y. Functionalized MoS2 nanovehicle with near-infrared laser-mediated nitric oxide release and photothermal activities for advanced bacteria-infected wound therapy. Small. 2018;14(45):1802290.

    Article  Google Scholar 

  227. Cao F, Ju E, Zhang Y, Wang Z, Liu C, Li W, Huang Y, Dong K, Ren J, Qu X. An efficient and benign antimicrobial depot based on silver-infused MoS2. ACS Nano. 2017;11(5):4651.

    Article  CAS  PubMed  Google Scholar 

  228. Jang J, Park CB. Near-infrared-active copper molybdenum sulfide nanocubes for phonon-mediated clearance of alzheimer’s β-amyloid aggregates. ACS Appl Mater Interfaces. 2021;13(16):18581.

    Article  CAS  PubMed  Google Scholar 

  229. Lee JW, Chae S, Oh S, Kim DH, Kim SH, Kim SJ, Choi JY, Lee JH, Song SY. Bioessential inorganic molecular wire-reinforced 3D-printed hydrogel scaffold for enhanced bone regeneration. Adv Healthcare Mater. 2022;12(2):2201665.

    Article  Google Scholar 

  230. Taheri NS, Wang Y, Berean K, Chan PPY, Kalantar-Zadeh K. Lithium intercalated molybdenum disulfide-coated cotton thread as a viable nerve tissue scaffold candidate. ACS Appl Nano Mater. 2019;2(4):2044.

    Article  CAS  Google Scholar 

  231. Shao C, Wang JP, Yang GC, Su ZM, Hu DH, Sun CC. Interactions of [Mo6O19]2- and its derivatives substituted with organic groups inhibitor with SARS-CoV 3CLpro by molecular modeling. Chem J Chin U. 2008;29:165.

    CAS  Google Scholar 

  232. Ito T, Sunada K, Nagai T, Ishiguro H, Nakano R, Suzuki Y, Nakano A, Yano H, Isobe T, Matsushita S, Nakajima A. Preparation of cerium molybdates and their antiviral activity against bacteriophage Φ6 and SARS-CoV-2. Mater Lett. 2021;290:129510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Xie M, Huang C, Liang Y, Li S, Sheng L, Cao Y. MoS2 nanosheets and bulk materials altered lipid profiles in 3D Caco-2 spheroids. Chin Chem Lett. 2022;33(1):293.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (Nos. 2021YFA1201200 and 2020YFA0710702); Strategic Priority Research Program of Chinese Academy of Sciences (No. XDB36000000); Directional Institutionalized Scientific Research Platform relies on Beijing Synchrotron Radiation Facility of Chinese Academy of Sciences; Beijing Natural Science Foundation (No. 2222087).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing Wu, Hong-Bin Qi or Shuang Zhu.

Ethics declarations

Conflict of interest

Zhan-Jun Gu is an editorial board member for Tungsten and was not involved in the editorial review or the decision to publish this article. All authors declare that there are no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, ZQ., Pan, YW., Wu, J. et al. A bibliometric analysis of molybdenum-based nanomaterials in the biomedical field. Tungsten 6, 17–47 (2024). https://doi.org/10.1007/s42864-023-00225-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42864-023-00225-1

Keywords

Navigation