Skip to main content
Log in

Preparation of tungsten–iron composite oxides and application in environmental catalysis for volatile organic compounds degradation

  • Original Paper
  • Published:
Tungsten Aims and scope Submit manuscript

Abstract

Emission of volatile organic compounds has important influence on complex air pollution and human health. In this paper, a series of tungsten–iron composite oxides with different proportions and preparation methods were synthesized and first used for catalytic combustion of chlorobenzene and toluene, as typical polluting gas sources. These WO3-based solid catalytic materials were systematically characterized by modern analytical methods, and the results showed that there was strong electron interaction between W and Fe elements in the composite oxides, and the presence of a certain amount of tungsten oxide inhibited the crystallization of iron oxide, and vice versa, which were beneficial to the uniform dispersion of tungsten–iron components into each other and the improvement of redox properties. Compared with single-component oxide, the formation of tungsten–iron composite oxide affected the micro-structure, improved the specific surface area and optimized the pore structure of materials. The performance test results showed that the tungsten–iron composite oxide (FeWO4–0.5Fe2O3, molar ratio of tungsten and iron was 1/2) prepared using citric acid-based sol–gel method was the optimal, and its catalytic degradation efficiency could reach 90% for chlorobenzene and 83% for toluene at 320 °C, and maintain at least 60 h without obvious deactivation, with high selectivity to the formation of HCl and CO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. He C, Cheng J, Zhang X, Douthwaite M, Pattisson S, Hao ZP. Recent advances in the catalytic oxidation of volatile organic compounds: a review based on pollutant sorts and sources. Chem Rev. 2019;119:4471.

    CAS  Google Scholar 

  2. Ojala S, Pitkäaho S, Laitinen T, Koivikko NN, Brahmi R, Gaálová J, Matejova L, Kucherov A, Päivärinta S, Hirschmann C, Nevanperä T, Riihimäki M, Pirilä M, Keiski RL. Catalysis in VOC abatement. Top Catal. 2011;54:1224.

    CAS  Google Scholar 

  3. Shestakova M, Sillanpää M. Removal of dichloromethane from ground and wastewater: a review. Chemosphere. 2013;93:1258.

    CAS  Google Scholar 

  4. Lin FW, Zhang ZM, Li N, Yan BB, He C, Hao ZP, Chen GY. How to achieve complete elimination of Cl-VOCs: a critical review on byproducts formation and inhibition strategies during catalytic oxidation. Chem Eng J. 2021;404:126534.

    CAS  Google Scholar 

  5. Kamal MS, Razzak SA, Hossain MM. Catalytic oxidation of volatile organic compounds (VOCs)—a review. Atmos Environ. 2016;140:117.

    CAS  Google Scholar 

  6. Zhang ZX, Jiang Z, Shangguan WF. Low-temperature catalysis for VOCs removal in technology and application: a state-of-the-art review. Catal Today. 2016;264:270.

    CAS  Google Scholar 

  7. Aranzabal A, Pereda-Ayo B, González-Marcos MP, González-Marcos JA, López-Fonseca R, González-Velasco JR. State of the art in catalytic oxidation of chlorinated volatile organic compounds. Chem Pap. 2014;68:1169.

    CAS  Google Scholar 

  8. Spivey JJ, Butt JB. Literature review: deactivation of catalysts in the oxidation of volatile organic compounds. Catal Today. 1992;11:465.

    CAS  Google Scholar 

  9. Huang HB, Xu Y, Feng QY, Leung DYC. Low temperature catalytic oxidation of volatile organic compounds: a review. Catal Sci Technol. 2015;5:2649.

    CAS  Google Scholar 

  10. Liotta LF. Catalytic oxidation of volatile organic compounds on supported noble metals. Appl Catal B Environ. 2010;100:403.

    CAS  Google Scholar 

  11. Dai QG, Wu JY, Deng W, Hu JS, Wu QQ, Guo LM, Sun W, Zhan WC, Wang XY. Comparative studies of P/CeO2 and Ru/CeO2 catalysts for catalytic combustion of dichloromethane: from effects of H2O to distribution of chlorinated by-products. Appl Catal B Environ. 2019;249:9.

    CAS  Google Scholar 

  12. Feng Y, Wang CC, Wang C, Huang HB, Hsi HC, Duan E, Liu YX, Guo GS, Dai HX, Deng JG. Catalytic stability enhancement for pollutant removal via balancing lattice oxygen mobility and VOCs adsorption. J Hazard Mater. 2022;424:127337.

    CAS  Google Scholar 

  13. Cao S, Fei XQ, Wen YX, Sun ZX, Wang HQ, Wu ZB. Bimodal mesoporous TiO2 supported Pt, Pd and Ru catalysts and their catalytic performance and deactivation mechanism for catalytic combustion of dichloromethane (CH2Cl2). Appl Catal A-Gen. 2018;550:20.

    CAS  Google Scholar 

  14. Wang Y, Chen Y, Zhang L, Wang G, Deng W, Guo LM. Total catalytic oxidation of chlorinated aromatics over bimetallic Pt-Ru supported on hierarchical HZSM-5 zeolite. Micropor Mesopor Mat. 2020;308:110538.

    CAS  Google Scholar 

  15. Zhang QL, Su WK, Ning P, Liu X, Wang HM, Hu J. Catalytic performance and mechanistic study of toluene combustion over the Pt-Pd-HMS catalyst. Chem Eng Sci. 2019;205:230.

    CAS  Google Scholar 

  16. Yang P, Li JR, Cheng Z, Zuo SF. Promoting effects of Ce and Pt addition on the destructive performances of V2O5/γ-Al2O3 for catalytic combustion of benzene. App Catal A-Gen. 2017;542:38.

    CAS  Google Scholar 

  17. Yang P, Fan SK, Chen ZY, Bao GF, Zuo SF, Qi CZ. Synthesis of Nb2O5 based solid superacid materials for catalytic combustion of chlorinated VOCs. Appl Catal B-Environ. 2018;239:114.

    CAS  Google Scholar 

  18. Tao HY, Li J, Ma QY, Chen ZY, Zhang XW, Quan YR, Yang P, Qi CZ. Synthesis of W-Nb-O solid acid for catalytic combustion of low-concentration monochlorobenzene. Chem Eng J. 2020;382:123045.

    CAS  Google Scholar 

  19. Yang P, Li J, Bao LF, Zhou X, Zhang XW, Fan SK, Chen ZY, Zuo SF, Qi CZ. Adsorption/catalytic combustion of toxic 1,2-dichloroethane on multifunctional Nb2O5-TiO2 composite metal oxides. Chem Eng J. 2019;361:1400.

    CAS  Google Scholar 

  20. Yang P, Xue XM, Meng ZH, Zhou RX. Enhanced catalytic activity and stability of Ce doping on Cr supported HZSM-5 catalysts for deep oxidation of chlorinated volatile organic compounds. Chem Eng J. 2013;234:203.

    CAS  Google Scholar 

  21. Yang P, Shi ZN, Tao F, Yang SS, Zhou RX. Synergistic performance between oxidizability and acidity/texture properties for 1,2-dichloroethane oxidation over (Ce, Cr)xO2/zeolite catalysts. Chem Eng Sci. 2015;134:340.

    CAS  Google Scholar 

  22. Cheng Z, Chen Z, Li JR, Zuo SF, Yang P. Mesoporous silica-pillared clays supported nanosized Co3O4-CeO2 for catalytic combustion of toluene. Appl Surf Sci. 2018;459:32.

    CAS  Google Scholar 

  23. Li WB, Wang JX, Gong H. Catalytic combustion of VOCs on non-noble metal catalysts. Catal Today. 2009;148:81.

    CAS  Google Scholar 

  24. Tang WX, Liu G, Li DY, Liu HD, Wu XF, Han N, Chen YF. Design and synthesis of porous non-noble metal oxides for catalytic removal of VOCs. Sci China Chem. 2015;58:1359.

    CAS  Google Scholar 

  25. Weng XL, Zhang JY, Wu ZB, Liu Y. Continuous hydrothermal flow syntheses of transition metal oxide doped CexTiO2 nanopowders for catalytic oxidation of toluene. Catal Today. 2011;175:386.

    CAS  Google Scholar 

  26. Chen G, Hong DS, Xia HQ, Sun W, Shao SJ, Gong BW, Wang S, Wu JY, Wang XY, Dai QG. Amorphous and homogeneously Zr-doped MnOx with enhanced acid and redox properties for catalytic oxidation of 1,2-dichloroethane. Chem Eng J. 2022;428:131067.

    CAS  Google Scholar 

  27. Yang P, Li JR, Zuo SF. Promoting oxidative activity and stability of CeO2 addition on the MnOx modified kaolin-based catalysts for catalytic combustion of benzene. Chem Eng Sci. 2017;162:218.

    CAS  Google Scholar 

  28. Zagoruiko AN, Mokrinskii VV, Veniaminov SA, Noskov AS. On the performance stability of the MnOx/Al2O3 catalyst for VOC incineration under forced adsorption-catalytic cycling conditions. J Environ Chem Eng. 2017;5:5850.

    CAS  Google Scholar 

  29. Sophiana IC, Topandi A, Iskandar F, Devianto H, Nishiyama N, Budhi YW. Catalytic oxidation of benzene at low temperature over novel combination of metal oxide based catalysts: CuO, MnO2, NiO with Ce0.75Zr0.25O2 as support. Mater Today Chem. 2020;17:100305.

    CAS  Google Scholar 

  30. Sun W, Gong BW, Pan J, Wang YY, Xia HQ, Zhang H, Dai QG, Wang L, Wang XY. Catalytic combustion of CVOCs over CrxTi1-x oxide catalysts. J Catal. 2020;391:132.

    CAS  Google Scholar 

  31. Yu J, He DD, Zhao YT, Lu JC, Liu JP, Chen DK, Han CY, Luo YM. Promotion of catalytic performance by adding chromium into HZSM-5 zeolite catalyst for methyl mercaptan catalytic conversion. Mater Chem Phys. 2020;239:121952.

    CAS  Google Scholar 

  32. Zhou B, Zhang XX, Wang Y, Xie J, Xi K, Zhou Y, Lu HF. Effect of Ni–V loading on the performance of hollow anatase TiO2 in the catalytic combustion of dichloromethane. J Environ Sci. 2019;84:59.

    Google Scholar 

  33. Yang P, Shi ZN, Yang SS, Zhou RX. High catalytic performances of CeO2-CrOx catalysts for chlorinated VOCs elimination. Chem Eng Sci. 2015;126:361.

    CAS  Google Scholar 

  34. Gu YF, Cai T, Gao XH, Xia HQ, Sun W, Zhao J, Dai QG, Wang XY. Catalytic combustion of chlorinated aromatics over WOx/CeO2 catalysts at low temperature. Appl Catal B-Environ. 2019;248:264.

    CAS  Google Scholar 

  35. Gu YF, Shao SJ, Sun W, Xia HQ, Gao XH, Dai QG, Zhan WC, Wang XY. The oxidation of chlorinated organic compounds over W-modified Pt/CeO2 catalysts. J Catal. 2019;380:375.

    CAS  Google Scholar 

  36. Yang P, Jin YY, Zhang XW, Qi CZ, Shi J, Tang J, Luob H, Shan BF, Pan PJ. Influence of Ce/Nb molar ratios on oxygen-rich CexNb1-xO4+δ materials for catalytic combustion of VOCs in the process of polyether polyol synthesis. Catal Lett. 2021. https://doi.org/10.1007/s10562-021-03652-2.

    Article  Google Scholar 

  37. Taylor MN, Zhou W, Garcia T, Solsona B, Carley AF, Kiely CJ, Taylor SH. Synergy between tungsten and palladium supported on titania for the catalytic total oxidation of propane. J Catal. 2012;285:103.

    CAS  Google Scholar 

  38. Liao WM, Fang XX, Cen BH, Chen J, Liu YR, Luo MF, Lu JQ. Deep oxidation of propane over WO3—promoted Pt/BN catalysts: the critical role of Pt—WO3 interface. Appl Catal B-Environ. 2020;272:118858.

    CAS  Google Scholar 

  39. Dutta V, Sharma S, Raizada P, Thakur VK, Khan AAP, Saini V, Asiri AM, Singh P. An overview on WO3 based photocatalyst for environmental remediation. J Environ Chem Eng. 2021;9:105018.

    CAS  Google Scholar 

  40. Razali NAM, Salleh WNW, Aziz F, Jye LW, Yusof N, Ismail AF. Review on tungsten trioxide as a photocatalysts for degradation of recalcitrant pollutants. J Clean Prod. 2021;309:127438.

    Google Scholar 

  41. Murillo-Sierra JC, Hernández-Ramírez A, Hinojosa-Reyes L, Guzmán-Mar JL. A review on the development of visible light-responsive WO3-based photocatalysts for environmental applications. Chem Eng J Adv. 2021;5:100070.

    Google Scholar 

  42. Yang P, Yang SS, Zhou RX. Deep oxidation of chlorinated VOCs over CeO2-based transition metal mixed oxide catalysts. Appl Catal B-Environ. 2015;162:227.

    CAS  Google Scholar 

  43. Kang TH, Youn S, Kim DH. Improved catalytic performance and resistance to SO2 over V2O5-WO3/TiO2 catalyst physically mixed with Fe2O3 for low-temperature NH3-SCR. Catal Today. 2021;376:95.

    CAS  Google Scholar 

  44. Wang H, Ning P, Zhang QL, Liu X, Zhang TX, Fan J, Wang J, Long KX. Promotional mechanism of WO3 over RuO2-Fe2O3 catalyst for NH3-SCO reaction. Appl Catal A-Gen. 2018;561:158.

    CAS  Google Scholar 

  45. Liu ZM, Su H, Chen BH, Li JH, Woo SI. Activity enhancement of WO3 modified Fe2O3 catalyst for the selective catalytic reduction of NOx by NH3. Chem Eng J. 2016;299:255.

    CAS  Google Scholar 

  46. Wang HX, Wang CH, Cui XM, Qin L, Ding RM, Wang LC, Liu Z, Zheng ZF, Lv BL. Design and facile one-step synthesis of FeWO4/Fe2O3 di-modified WO3 with super high photocatalytic activity toward degradation of quasi-phenothiazine dyes. Appl Catal B-Environ. 2018;221:169.

    CAS  Google Scholar 

  47. Mohamed HH. Rationally designed Fe2O3/GO/WO3 Z-Scheme photocatalyst for enhanced solar light photocatalytic water remediation. J Photochem Photobiol A. 2019;378:74.

    CAS  Google Scholar 

  48. Sadiq MMJ, Shenoy US, Bhat DK. Enhanced photocatalytic performance of N-doped RGO-FeWO4/Fe3O4 ternary nanocomposite in environmental applications. Mater Today Chem. 2017;4:133.

    Google Scholar 

  49. Gao QX, Liu ZJ. FeWO4 nanorods with excellent UV-Visible light photocatalysis. Prog Nat Sci. 2017;27:556.

    CAS  Google Scholar 

  50. Kovács TN, Pokol G, Gáber F, Nagy D, Igricz T, Lukács IE, Fogarassy Z, Balázsi K, Szilágyi IM. Preparation of iron tungstate (FeWO4) nanosheets by hydrothermal method. Mater Res Bull. 2017;95:56.

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Zhejiang Provincial Natural Science Foundation (Grant No. LQ19B030004), the National Natural Science Foundation of China (NSFC, Grant Nos. 21906106 and 21808048) and the soft science research project of Shaoxing Association of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Yang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 10118 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Wang, SL., Xuan, JL. et al. Preparation of tungsten–iron composite oxides and application in environmental catalysis for volatile organic compounds degradation. Tungsten 4, 38–51 (2022). https://doi.org/10.1007/s42864-021-00128-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42864-021-00128-z

Keywords

Navigation