Skip to main content
Log in

Review on helium behaviors in nanochannel tungsten film

  • Review Paper
  • Published:
Tungsten Aims and scope Submit manuscript

Abstract

Tungsten (W) as plasma facing material (PFM) needs to face an unprecedented harsh environment in the fusion reactor, which puts forward high requirements for its radiation tolerance. Among the many challenges, the rapid accumulation of helium (He) atoms to form numerous bubbles or even “fuzzy” nanostructure leads to swelling and embrittlement of W matrix and seriously shorten its service life, which is one of the most serious problems faced by PFM-W at present. In this review, we summarize the recent works on the nanochannel W films with high surface-to-volume ratio deposited by magnetron sputtering, and the behaviors of He in the nanochannel W films at different fusion-related irradiation environment. Experimental and simulation results showed that the nanochannel W films have better radiation tolerance performance in managing He behaviors than that of commercial bulk W.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Reproduced with permission from Ref. [27]. Copyright 2018 Elsevier

Fig. 3
Fig. 4
Fig. 5

Reproduced with permission from Ref. [34]. Copyright 2019 Elsevier

Fig. 6

Reproduced with permission from Ref. [34]. Copyright 2019 Elsevier

Fig. 7

Reproduced with permission from Ref. [39]. Copyright 2018 Institute of Physics (IOP)

Fig. 8

Reproduced from the Ref. [27]. Copyright 2018 Elsevier

Fig. 9

Reproduced with permission from Ref. [46]. Copyright 2019 IOP

Fig. 10

Reproduced with permission from Ref. [46]. Copyright 2019 IOP

Fig. 11

Reproduced with permission from Ref. [47]. Copyright 2020 Elsevier

Fig. 12

Reproduced with permission from Ref. [27]. Copyright 2018 Elsevier

Similar content being viewed by others

References

  1. Knaster J, Moeslang A, Muroga T. Materials research for fusion. Nat Phys. 2016;12(5):424.

    Article  CAS  Google Scholar 

  2. Abernethy RG. Predicting the performance of tungsten in a fusion environment: a literature review. Mater Sci Technol. 2016;33(4):388.

    Article  Google Scholar 

  3. Hosemann P, Frazer D, Fratoni M, Bolind A, Ashby MF. Materials selection for nuclear applications: Challenges and opportunities. Scri Mater. 2018;143:181.

    Article  CAS  Google Scholar 

  4. El-Atwani O, Gigax J, Chancey M, Baldwin JKS, Maloy SA. Nanomechanical properties of pristine and heavy ion irradiated nanocrystalline tungsten. Scr Mater. 2019;166:159.

    Article  CAS  Google Scholar 

  5. Zou Y, Maiti S, Steurer W, Spolenak R. Size-dependent plasticity in an Nb25Mo25Ta25W25 refractory high-entropy alloy. Acta Mater. 2014;65:85.

    Article  CAS  Google Scholar 

  6. Xin SW, Shen X, Du CC, Zhao J, Sun BR, Xue HX, Yang TT, Cai XC, Shen TD. Bulk nanocrystalline boron-doped VNbMoTaW high entropy alloys with ultrahigh strength, hardness, and resistivity. J Alloy Compd. 2021;853:155995.

    Article  CAS  Google Scholar 

  7. Zhang M, Zhou X, Yu X, Li J. Synthesis and characterization of refractory TiZrNbWMo high-entropy alloy coating by laser cladding. Surf Coat Technol. 2017;311:321.

    Article  CAS  Google Scholar 

  8. Bai XM, Voter AF, Hoagland RG, Nastasi M, Uberuaga BP. Efficient annealing of radiation damage near grain boundaries via interstitial emission. Science. 2010;327(5973):1631.

    Article  CAS  Google Scholar 

  9. El-Atwani O, Hattar K, Hinks JA, Greaves G, Harilal SS, Hassanein A. Helium bubble formation in ultrafine and nanocrystalline tungsten under different extreme conditions. J Nucl Mater. 2015;458:216.

    Article  CAS  Google Scholar 

  10. El-Atwani O, Hinks JA, Greaves G, Allain JP, Maloy SA. Grain size threshold for enhanced irradiation resistance in nanocrystalline and ultrafine tungsten. Mater Res Lett. 2017;5(5):343.

    Article  CAS  Google Scholar 

  11. Chen Z, Niu LL, Wang Z, Tian L, Kecskes L, Zhu K, Wei Q. A comparative study on the in situ helium irradiation behavior of tungsten: coarse grain vs. nanocrystalline grain. Acta Materialia. 2018;147:100.

  12. Wang J, Li C, Yuan Y, Greuner H, Cheng L, Lu GH. Surface modification of W–V alloy exposed to high heat flux helium neutral beams. Nucl Fusion. 2018;58(9):096001.

  13. Huang B, Chen LQ, Qiu WB, Yang XL, Shi K, Lian YY, Liu X, Tang J. Correlation between the microstructure, mechanical/thermal properties, and thermal shock resistance of K-doped tungsten alloys. J Nucl Mater. 2019;520:6.  

    Article  Google Scholar 

  14. Xu Q, Ding XY, Luo LM, Miyamoto M, Tokitani M, Zhang J, Wu YC. D-2 retention and microstructural evolution during He irradiation in candidate plasma facing material W-La2O3 alloy. J Nucl Mater. 2017;496:227.

    Article  Google Scholar 

  15. Xu Q, Ding XY, Luo LM, Miyamoto M, Tokitani M, Zhang J, Wu YC. Thermal stability and evolution of microstructures induced by He irradiation in W-TiC alloys. Nucl Mater Energy. 2018;15:76

    Article  Google Scholar 

  16. Dong L, Zhang H, Amekura H, Ren F, Chettah A, Hong M, Qin W, Tang J, Hu L, Wang H, Jiang C. Period-thickness dependent responses of Cu/W multilayered nanofilms to ions irradiation under different ion energies. J Nucl Mater. 2017;497:117.

    Article  CAS  Google Scholar 

  17. Wang H, Gao Y, Fu E, Yang T, Xue J, Yan S, Chu PK, Wang Y. Irradiation effects on multilayered W/ZrO2 film under 4MeV Au ions. J Nucl Mater. 2014;455(1–3):86.

    Article  CAS  Google Scholar 

  18. Chen F, Tang X, Huang H, Liu J, Li H, Qiu Y, Chen D. Surface damage and mechanical properties degradation of Cr/W multilayer films irradiated by Xe20+. App Surf Sci. 2015;357, Part A:1225.

  19. Beyerlein IJ, Caro A, Demkowicz MJ, Mara NA, Misra A, Uberuaga BP. Radiation damage tolerant nanomaterials. Mater Today. 2013;16(11):443.

    Article  CAS  Google Scholar 

  20. Ghalehbandi SM, Malaki M, Gupta M. Accumulative roll bonding—a review. Appl Sci. 2019;9(17):3627.

    Article  CAS  Google Scholar 

  21. Zhang X, Hattar K, Chen Y, Shao L, Li J, Sun C, Yu K, Li N, Taheri ML, Wang H, Wang J, Nastasi M. Radiation damage in nanostructured materials. Prog Mater Sci. 2018;96:217.

    Article  Google Scholar 

  22. Bringa EM, Monk JD, Caro A, Misra A, Zepeda-Ruiz L, Duchaineau M, Abraham F, Nastasi M, Picraux ST, Wang YQ, Farkas D. Are nanoporous materials radiation resistant? Nano Lett. 2012;12(7):3351.

    Article  CAS  Google Scholar 

  23. Li J, Wang H, Zhang X. A review on the radiation response of nanoporous metallic materials. JOM. 2018;70(11):2753.

    Article  Google Scholar 

  24. Lian Y, Liu X, Cheng Z, Wang J, Song J, Yu Y, Chen J. Thermal shock performance of CVD tungsten coating at elevated temperatures. J Nucl Mater. 2014;455(1–3):371.

    Article  CAS  Google Scholar 

  25. Lian Y, Liu X, Wang J, Feng F, Lv Y, Song J, Chen J. Influence of surface morphology and microstructure on performance of CVD tungsten coating under fusion transient thermal loads. Appl Surf Sci. 2016;390:167.

    Article  CAS  Google Scholar 

  26. Lian Y, Liu X, Xu ZY, Song JP, Yu Y. Preparation and properties of CVD-W coated W/Cu FGM mock-ups. Fusion Eng Des. 2013;88(9–10):1694.

    Article  CAS  Google Scholar 

  27. Qin W, Ren F, Doerner RP, Wei G, Lv Y, Chang S, Tang M, Deng H, Jiang C, Wang Y. Nanochannel structures in W enhance radiation tolerance. Acta Mater. 2018;153:147.

    Article  CAS  Google Scholar 

  28. Zhou HB, Li YH, Lu GH. Modeling and simulation of helium behavior in tungsten: a first-principles investigation. Comput Mater Sci. 2016;112:487.

    Article  CAS  Google Scholar 

  29. Gibson JSKL, Roberts SG, Armstrong DEJ. High temperature indentation of helium-implanted tungsten. Mater Sci Eng A. 2015;625:380.

    Article  CAS  Google Scholar 

  30. De Broglie I, Beck CE, Liu W, Hofmann F. Temperature dependence of helium-implantation-induced lattice swelling in polycrystalline tungsten: X-ray micro-diffraction and Eigenstrain modelling. Scr Mater. 2015;107:96.

    Article  Google Scholar 

  31. Qin W, Wang Y, Tang M, Ren F, Fu Q, Cai G, Dong L, Hu L, Wei G, Jiang C. Microstructure and hardness evolution of nanochannel W films irradiated by helium at high temperature. J Nucl Mater. 2018;502:132.

    Article  CAS  Google Scholar 

  32. Perez D, Vogel T, Uberuaga BP. Diffusion and transformation kinetics of small helium clusters in bulk tungsten. Phys Rev B. 2014;90(1):014102.

  33. Hu X, Koyanagi T, Fukuda M, Kumar NAPK, Snead LL, Wirth BD, Katoh Y. Irradiation hardening of pure tungsten exposed to neutron irradiation. J Nucl Mater. 2016;480:235.

    Article  CAS  Google Scholar 

  34. Qin W, Jin S, Cao X, Wang Y, Peres P, Choi SY, Jiang C, Ren F. Influence of nanochannel structure on helium-vacancy cluster evolution and helium retention. J Nucl Mater. 2019;527:151822.

  35. Gordo PM, Ferreira Marques MF, Vieira MT. Positron annihilation study on nanocrystalline copper thin films doped with nitrogen. 2017;65:15.

  36. Pentecoste L, Thomann AL, Brault P, Lecas T, Desgardin P, Sauvage T, Barthe MF. Substrate temperature and ion kinetic energy effects on first steps of He+ implantation in tungsten: experiments and simulations. Acta Mater. 2017;141:47.

    Article  CAS  Google Scholar 

  37. Li YG, Zhou WH, Huang LF, Zeng Z, Ju X. Cluster dynamics modeling of accumulation and diffusion of helium in neutron irradiated tungsten. J Nucl Mater. 2012;431(1–3):26.

    Article  CAS  Google Scholar 

  38. Wang Z. Simulation of radiation effects in structural materials of reactors using high-energy heavy-ion irradiations. Nucl Phys Rev. 2006;23(2):155.

    CAS  Google Scholar 

  39. Qin W, Ren F, Zhang J, Dong XN, Feng YJ, Wang H, Tang J, Cai GX, Wang YQ, Jiang CZ. Helium retention in krypton ion pre-irradiated nanochannel W film. Nucl Fusion. 2018;58(2):026021.

  40. Gong YH, Cao XZ, Jin SX, Lu EY, Hu YC, Zhu T, Kuang P, Xu Q, Wang BY. Effect of dislocations on helium retention in deformed pure iron. J Nucl Mater. 2016;482:93.

    Article  CAS  Google Scholar 

  41. Zhu T, Cao XZ, Jin SX, Wu JP, Gong YH, Lu EY, Wang BY, Yu RS, Wei L. Helium retention and thermal desorption from defects in Fe9Cr binary alloys. J Nucl Mater. 2015;466:522.

    Article  CAS  Google Scholar 

  42. Karl DH. Helium, hydrogen, and fuzz in plasma-facing materials. Mater Res Express. 2017;4(10):104002.

  43. Baldwin MJ, Doerner RP. Helium induced nanoscopic morphology on tungsten under fusion relevant plasma conditions. Nucl Fusion. 2008;48(3):035001.

  44. Petty TJ, Baldwin MJ, Hasan MI, Doerner RP, Bradley JW. Tungsten ‘fuzz’ growth re-examined: the dependence on ion fluence in non-erosive and erosive helium plasma. Nucl Fusion. 2015;55(9):093033.

  45. Ito AM, Takayama A, Oda Y, Tamura T, Kobayashi R, Hattori T, Ogata S, Ohno N, Kajita S, Yajima M, Noiri Y, Yoshimoto Y, Saito S, Takamura S, Murashima T, Miyamoto M, Nakamura H. Molecular dynamics and Monte Carlo hybrid simulation for fuzzy tungsten nanostructure formation. Nucl Fusion. 2015;55(7):073013.

  46. Wei G, Ren F, Fang J, Hu W, Gao F, Qin W, Cheng T, Wang Y, Jiang C, Deng H. Understanding the release of helium atoms from nanochannel tungsten: a molecular dynamics simulation. Nucl Fusion. 2019;59(7):076020.

  47. Wei G, Li J, Li Y, Deng H, Jiang C, Ren F. A better nanochannel tungsten film in releasing helium atoms. J Nucl Mater. 2020;532:152044.

  48. Wang JL, Niu LL, Shu XL, Zhang Y. Stick–slip behavior identified in helium cluster growth in the subsurface of tungsten: effects of cluster depth. J Phys. 2015;27(39):395001.

  49. Wang J, Zhang Y, Zhou HB, Jin S, Lu GH. First-principles investigation of helium dissolution and clustering at a tungsten (110) surface. J Nucl Mater. 2015;461:230.

    Article  CAS  Google Scholar 

  50. Pan GY, Li YG, Zhang YS, Zhang CG, Zhao Z, Zeng Z. First-principles investigation of the orientation influenced He dissolution and diffusion behaviors on W surfaces. RSC Adv. 2017;7(41):25789.

    Article  Google Scholar 

  51. Liang L, Ma M, Xiang W, Wang Y, Cheng Y, Tan X. A molecular dynamics simulation study of temperature and depth effect on helium bubble releasing from Ti surface. J Alloy Compd. 2015;645:S166.

    Article  CAS  Google Scholar 

  52. Liu S, Dai S, Sang C, Sun J, Stirner T, Wang D. Molecular dynamics simulation of the formation, growth and bursting of bubbles in tungsten exposed to high fluxes of low energy deuterium. J Nucl Mater. 2015;463:363.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Fund for Excellent Young Scholars (Grant No. 11522543), the National Natural Science Foundation of China (Grant Nos. 11905058, 11935011 and 11475129), the Natural Science Foundation of Hubei Province, China (Grant Nos. 2020CFA041 and 2016CFA080), and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Contributions

Wen-jing Qin wrote the draft; Wei Guo, Tao Cheng, and Jun Tang collected the data; Chang-Zhong Jiang and Feng Ren contributed to conceived the idea of the study. All authors contributed to the writing and revisions.

Corresponding author

Correspondence to Feng Ren.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, WJ., Guo, W., Cheng, T. et al. Review on helium behaviors in nanochannel tungsten film. Tungsten 3, 369–381 (2021). https://doi.org/10.1007/s42864-021-00097-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42864-021-00097-3

Keywords

Navigation