Skip to main content
Log in

Fragility under shocking: molecular dynamics insights into defect evolutions in tungsten lattice

  • Original Paper
  • Published:
Tungsten Aims and scope Submit manuscript

A Correction to this article was published on 21 August 2021

This article has been updated

Abstract

Tungsten has promising applications in high-radiation, high-erosion and high-impact environments. Laser peening is an effective method to enhance the surface mechanical properties of tungsten materials. However, the ultrafast dynamic mechanism of defect evolutions induced by laser shockwave in tungsten lattice is unclear. Here, we investigated the evolutions and interactions of various defects under ultrafast compressive process in tungsten lattice using molecular dynamic method. The results confirm the brittleness of tungsten and reveal that void can reduce the yield strain and strength of the tungsten lattice by accelerating defect mesh extension and promoting the dislocation nucleation around itself. Dislocation density is increased with compressive strain rate. Meanwhile, dislocation multiplication and motion reduce the elastic stage and play a dominant role during the plastic deformation of tungsten lattice. Additionally, void can disrupt the dislocation displacement and promote the pinning effect on dislocations by defect mesh extension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

References

  1. Rieth M, Dudarev SL, Gonzalez de Vicente SM, Aktaa J, Ahlgren T, Antusch S, Armstrong DEJ, Balden M, Baluc N, Barthe MF, Basuki WW, Battabyal M, Becquart CS, Blagoeva D, Boldyryeva H, Brinkmann J, Celino M, Ciupinski L, Correia JB, Backer AD, Domain C, Gaganidze E, García-Rosales C, Gibson J, Gilbert MR, Giusepponi S, Gludovatz B, Greuner H, Heinola K, Höschen T, Hoffmann A, Holstein N, Koch F, Krauss W, Li H, Lindig S, Linke J, Linsmeier C, López-Ruiz P, Maier H, Matejicek J, Mishra TP, Muhammed M, Muñoz A, Muzyk M, Nordlund K, Nguyen-Manh D, Opschoor J, Ordás N, Palacios T, Pintsuk G, Pippan R, Reiser J, Riesch J, Roberts SG, Romaner L, Rosiński M, Sanchez M, Schulmeyer W, Traxler H, Ureña A, Van Der Laan JG, Veleva L, Wahlberg S, Walter M, Weber T, Weitkamp T, Wurster S, Yar MA, You JH, Zivelonghi A. Recent progress in research on tungsten materials for nuclear fusion applications in Europe. J Nucl Mater. 2013;432(1):482.

    Article  CAS  Google Scholar 

  2. Matejicek J, Veverka J, Yin C, Vilemova M, Terentyev D, Wirtz M, Gago M, Dubinko A, Hadraba H. Spark plasma sintered tungsten—mechanical properties, irradiation effects and thermal shock performance. J Nucl Mater. 2020;542:152518.

    Article  CAS  Google Scholar 

  3. An Q, Elshafiey A, Huang L, Hammer DA, Hassani M. Plasma and X-ray radiation-induced damage mechanisms in a tungsten heavy alloy. J Nucl Mater. 2020;539:152325.

    Article  CAS  Google Scholar 

  4. Stork D, Agostini P, Boutard JL, Buckthorpe D, Diegele E, Dudarev SL, English C, Federici G, Gilbert MR, Gonzalez S, Ibarra A, Linsmeier C, Li Puma A, Marbach G, Morris PF, Packer LW, Raj B, Rieth M, Tran MQ, Ward DJ, Zinkle SJ. Developing structural, high-heat flux and plasma facing materials for a near-term DEMO fusion power plant: the EU assessment. J Nucl Mater. 2014;455(1–3):277.

    Article  CAS  Google Scholar 

  5. Reiser J, Hoffmann J, Jäntsch U, Klimenkov M, Bonk S, Bonnekoh C, Hoffmann A, Mrotzek T, Rieth M. Ductilisation of tungsten (W): on the increase of strength and room-temperature tensile ductility through cold-rolling. Int J Refract Met Hard Mater. 2017;64:261.

    Article  CAS  Google Scholar 

  6. Terra A, Sergienko G, Kreter A, Martynova Y, Rasinski M, Wirtz M, Loewenhoff T, Pintsuk G, Dorow-Gerspach D, Mao Y, Schwalenberg D, Raumann L, Coenen JW, Brezinsek S, Unterberg B, Linsmeier C. Micro-structured tungsten, a high heat flux pulse proof material. Nucl Mater Energy. 2020;25:100789.

    Article  Google Scholar 

  7. Nogami S, Hasegawa A, Fukuda M, Rieth M, Reiser J, Pintsuk G. Mechanical properties of tungsten: Recent research on modified tungsten materials in Japan. J Nucl Mater. 2021;543:152506.

    Article  CAS  Google Scholar 

  8. Li Y, Ran G, Guo Y, Sun Z, Liu X, Li Y, Qiu X, Xin Y. The evolution of dislocation loop and its interaction with pre-existing dislocation in He+-irradiated molybdenum: in-situ TEM observation and molecular dynamics simulation. Acta Mater. 2020;201:462.

    Article  CAS  Google Scholar 

  9. Miyazawa T, Garrison LM, Geringer JW, Echols JR, Fukuda M, Katoh Y, Hinoki T, Hasegawa A. Tensile properties of powder-metallurgical-processed tungsten alloys after neutron irradiation near recrystallization temperatures. J Nucl Mater. 2020;542:152505.

    Article  CAS  Google Scholar 

  10. El-Atwani O, Aydogan E, Esquivel E, Efe M, Wang YQ, Maloy SA. Detailed transmission electron microscopy study on the mechanism of dislocation loop rafting in tungsten. Acta Mater. 2018;147:277.

    Article  CAS  Google Scholar 

  11. Xie HX, Gao N, Xu K, Lu GH, Yu T, Yin FX. A new loop-punching mechanism for helium bubble growth in tungsten. Acta Mater. 2017;141:10.

    Article  CAS  Google Scholar 

  12. Montross CS, Wei T, Ye L, Clark G, Mai YW. Laser shock processing and its effects on microstructure and properties of metal alloys: a review. Int J Fatigue. 2002;24(10):1021.

    Article  CAS  Google Scholar 

  13. Karthik D, Swaroop S. Laser peening without coating-an advanced surface treatment: a review. Mater Manuf Process. 2017;32(14):1565.

    Article  CAS  Google Scholar 

  14. Ye YX, Feng YY, Lian ZC, Hua YQ. Plastic deformation mechanism of polycrystalline copper foil shocked with femtosecond laser. Appl Surf Sci. 2014;309:240.

    Article  CAS  Google Scholar 

  15. Zhang XC, Zhang YK, Lu JZ, Xuan FZ, Wang ZD, Tu ST. Improvement of fatigue life of Ti-6Al-4V alloy by laser shock peening. Mater Sci Eng A. 2010;527(15):3411.

    Article  Google Scholar 

  16. Sanchez AG, You C, Leering M, Glaser D, Furfari D, Fitzpatrick ME, Wharton J, Reed PAS. Effects of laser shock peening on the mechanisms of fatigue short crack initiation and propagation of AA7075-T651. Int J Fatigue. 2021;143:106025.

    Article  CAS  Google Scholar 

  17. Lu JZ, Luo KY, Yang DK, Cheng XN, Hu JL, Dai FZ, Qi H, Zhang L, Zhong JS, Wang QW, Zhang YK. Effects of laser peening on stress corrosion cracking (SCC) of ANSI 304 austenitic stainless steel. Corros Sci. 2012;60:145.

    Article  CAS  Google Scholar 

  18. Peng Q, Meng FJ, Yang YZ, Lu CY, Deng HQ, Wang LM, De S, Gao F. Shockwave generates <100> dislocation loops in bcc iron. Nat Commun. 2018;9:4880.

    Article  Google Scholar 

  19. Wang PJ, Cao Q, Yan YP, Nie YT, Liu S, Peng Q. Graphene surface reinforcement of iron. Nanomaterials. 2019;9(1):59.

    Article  Google Scholar 

  20. Marinica MC, Ventelon L, Gilbert MR, Proville L, Dudarev SL, Marian J, Bencteux G, Willaime F. Interatomic potentials for modelling radiation defects and dislocations in tungsten. J Phys. 2013;25:395502.

    Google Scholar 

  21. Hoover WG. Canonical dynamics: equilibrium phase-space distributions. Phys Rev A. 1985;31(3):1695.

    Article  CAS  Google Scholar 

  22. Stukowski A. Visualization and analysis of atomistic simulation data with OVITO-the Open Visualization Tool. Model Simul Mater Sci Eng. 2010;18(1):15012.

    Article  Google Scholar 

  23. Kim JY, Jang D, Greer JR. Tensile and compressive behavior of tungsten, molybdenum, tantalum and niobium at the nanoscale. Acta Mater. 2010;58(7):2355.

    Article  CAS  Google Scholar 

  24. Liddicoat PV, Liao XZ, Zhao YH, Zhu YT, Murashkin MY, Lavernia EJ, Valiev RZ, Ringer SP. Nanostructural hierarchy increases the strength of aluminium alloys. Nat Commun. 2010;1:63.

    Article  Google Scholar 

  25. Rupert TJ, Trenkle JC, Schuh CA. Enhanced solid solution effects on the strength of nanocrystalline alloys. Acta Mater. 2011;59(4):1619.

    Article  CAS  Google Scholar 

  26. Suzudo T, Takamizawa H, Nishiyama Y, Caro A, Toyama T, Nagai Y. Atomistic modeling of hardening in spinodally-decomposed Fe-Cr binary alloys. J Nucl Mater. 2020;540:152306.

    Article  CAS  Google Scholar 

  27. Lu X, Wang D. Effect of hydrogen on deformation behavior of Alloy 725 revealed by in-situ bi-crystalline micropillar compression test. J Mater Sci Technol. 2021;67:243.

    Article  Google Scholar 

  28. Li H, Wurster S, Motz C, Romaner L, Ambrosch-Draxl C, Pippan R. Dislocation-core symmetry and slip planes in tungsten alloys: ab initio calculations and microcantilever bending experiments. Acta Mater. 2012;60(2):748.

    Article  CAS  Google Scholar 

  29. Muzyk M, Nguyen-Manh D, Kurzydłowski KJ, Baluc NL, Dudarev SL. Phase stability, point defects, and elastic properties of W-V and W-Ta alloys. Phys Rev B. 2011;84:104115.

    Article  Google Scholar 

  30. Romaner L, Ambrosch-Draxl C, Pippan R. Effect of rhenium on the dislocation core structure in tungsten. Phys Rev Lett. 2010;104(19):195503.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially support from the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDA25040201), and the National Natural Science Foundation of China (Grant No. 51727901). Qing Peng would like to acknowledge the support provided by the Deanship of Scientific Research (DSR) at King Fahd University of Petroleum & Minerals (KFUPM) (Grant No. DF201020). The numerical calculations in this paper were conducted on the supercomputing system at the Supercomputing Center of Wuhan University.

Author information

Authors and Affiliations

Authors

Contributions

Peng-Jie Wang, Qiang Cao and QingPeng conceived the idea and wrote the paper. Peng-Jie Wang did the experiments and simulations. Peng-Jie Wang and Sheng Liu performed the data analysis. All the authors had full discussions and comments on the paper.

Corresponding authors

Correspondence to Qiang Cao or Qing Peng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, PJ., Cao, Q., Liu, S. et al. Fragility under shocking: molecular dynamics insights into defect evolutions in tungsten lattice. Tungsten 3, 234–242 (2021). https://doi.org/10.1007/s42864-021-00087-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42864-021-00087-5

Keywords

Navigation