Skip to main content
Log in

Impact of plastic deformation on plasma induced damage and deuterium retention in tungsten

  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Recent theoretical and subsequent experimental studies suggest that the uptake and release of deuterium (D) in tungsten (W) under high flux ITER-relevant plasma exposure is controlled by dislocation microstructure. Thanks to numerical calculations, a comprehensive mechanism for the nucleation and growth of D bubbles on dislocation network was proposed. The process of bubble nucleation can be described as D atom trapping at a dislocation line, its in-core migration, the coalescence of several D atoms into a multiple cluster eventually transforming into a nano-bubble. This view implies that the initial microstructure might be crucial for D uptake and degradation of the sub-surface layer under prolonged plasma exposure. In this work, we apply several experimental techniques to investigate the microstructure and mechanical properties of surface and sub-surface layer of W in recrystallized and plastically-deformed condition exposed to the high flux plasma. We use transmission and scanning electron microscopy, thermal desorption spectroscopy as well as nano-indentation measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.M. Myers, M.I. Baskes, H.K. Birnbaum, J.W. Corbett, et al. Rev. Modern Physics, 64, 559 (1992).

    Article  CAS  Google Scholar 

  2. M. Daw and M. Baskes. Phys. Rev. Lett., 50, 1285 (1983).

    Article  CAS  Google Scholar 

  3. S. Matsuda and K. Tobita. Journal of Nucl. Sci. Tech., 50, 321 (2013).

    Article  CAS  Google Scholar 

  4. D.F. Johnson and E.A. Carter. J.Mater.Res., 25, 315 (2010).

    Article  CAS  Google Scholar 

  5. K. Heinola, T. Ahlgren, K. Nordlund and J. Keinonen. Phys. Rev. B, 82, 094102 (2010).

    Article  Google Scholar 

  6. R. Difoggio and R. Gomer. Phys. Rev. Lett., 44, 1258 (1980).

    Article  CAS  Google Scholar 

  7. T. Ahlgren, K. Heinola, K. Vortler and J. Keinonen. J. Nucl. Mater., 427, 152 (2012).

    Article  CAS  Google Scholar 

  8. D. Terentyev, V. Dubinko, A. Bakaev, Y. Zayachuk, W. Van Renterghem and P. Grigorev. Nuclear Fusion, 54, 042004 (2014).

    Article  Google Scholar 

  9. G. Pintsuk. Comprehensive Nuclear Materials, 4, 551 (2012).

    Article  CAS  Google Scholar 

  10. I. Uytdenhouwen, M. Decreton, T. Hirai, J. Linke, G. Pintsuk and G. Van Oost. J. Nucl. Mater., 363– 365, 1099 (2007).

    Article  Google Scholar 

  11. D. Terentyev, X.Z. Xiao, A. Dubinko, A. Bakaeva and H.L. Duan. J. Mech. Phys. Solids, 85, 1 (2015).

    Article  CAS  Google Scholar 

  12. G.J. van Rooij, V.P. Veremiyenko, W.J. Goedheer, B. de Groot, et al. Appl. Phys. Lett. 90 (2007).

    Google Scholar 

  13. H. van der Meiden, R. Al, C. Barth, A. Donee, R. Engeln and W. Goedheer. Rev. Sci. Instrum., 79, 013505 (2008).

    Article  Google Scholar 

  14. Y. Zayachuk, M.H.J. ’t Hoen, P.A.Z. van Emmichoven, I. Uytdenhouwen and G. van Oost. Nuclear Fusion, 52, 103021 (2012).

    Article  Google Scholar 

  15. Y. Zayachuk, M.H.J. ’t Hoen, P.A.Z. van Emmichoven, D. Terentyev, I. Uytdenhouwen and G. van Oost. Nuclear Fusion, 53, 013013 (2013).

    Article  Google Scholar 

  16. W. Oliver and G. Pharr. J Mater Res, 19, 3 (2004).

    Article  CAS  Google Scholar 

  17. W.M. Shu, E. Wakai and T. Yamanishi. Nuclear Fusion, 47, 201 (2007).

    Article  CAS  Google Scholar 

  18. C.H. Skinner, A.A. Haasz, V.K. Alimow, N. Bekris, et al. Fusion Science and Technology, 54, 891 (2008).

    Article  CAS  Google Scholar 

  19. D.E.J. Armstrong, P.D. Edmondson and S.G. Roberts. Applied Physics Letters 102 (2013).

    Article  Google Scholar 

  20. Z.X. Zhang, D.S. Chen, W.T. Han and A. Kimura. Fusion Engineering and Design, 98–99, 2103 (2015).

    Google Scholar 

  21. O.V. Ogorodnikova, J. Roth and M. Mayer. J Appl. Phys., 103, 034902 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakaeva, A., Terentyev, D. & Dubinko, A. Impact of plastic deformation on plasma induced damage and deuterium retention in tungsten. MRS Advances 2, 3347–3352 (2017). https://doi.org/10.1557/adv.2017.428

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2017.428

Navigation