Skip to main content

Advertisement

Log in

Controllable synthesis and surface modification of molybdenum oxide nanowires: a short review

  • Review Paper
  • Published:
Tungsten Aims and scope Submit manuscript

A Correction to this article was published on 21 August 2021

This article has been updated

Abstract

Transition metal oxides are found to have overwhelming applications in energy, electronics, catalytic, and bio- and micromechanical systems. A recent report emphasized the current advancements in molybdenum oxide (MoOx) nanowire synthesis and the corresponding surface-functionalized nanostructured materials based on our previously reported investigations. The preparation of the nanowires and their applications were systematically summarized. MoOx nanowires combined with substrates exhibited remarkable performances for high energy storage and power densities with high stability. In addition, the review concluded the future advancements of MoOx nanowires.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Reproduced with permission from Ref. [13]. Copyright 2016 Elsevier

Fig. 2

Reproduced with permission from Ref. [5]. Copyright 2003 Wiley

Fig. 3

Reproduced with permission from Ref. [27]. Copyright 2018 American Chemical Society (ACS)

Fig. 4

Reproduced with permission from Ref. [29]. Copyright 2018 Elsevier

Fig. 5

Reproduced with permission from Ref. [10]. Copyright 2006 ACS

Fig. 6

Reproduced with permission from Ref. [10]. Copyright 2006 ACS

Fig. 7

Reproduced with permission from Ref. [43]. Copyright 2016 Elsevier

Fig. 8

Reproduced with permission from Ref. [46]. Copyright 2015 Elsevier

Fig. 9

Reproduced with permission from Ref. [47]. Copyright 2019 Springer publishing

Similar content being viewed by others

Change history

References

  1. Meyer J, Hamwi S, Kröger M, Kowalsky W, Riedl T, Kahn A. Transition metal oxides for organic electronics: energetics, device physics and applications. Adv Mater. 2012;24(40):5408.

    Article  CAS  Google Scholar 

  2. Mai L, Yang F, Zhao Y, Xu X, Xu L, Hu B, Luo Y, Liu H. Molybdenum oxide nanowires: synthesis and properties. Mater Today. 2011;14(7–8):346.

    Article  CAS  Google Scholar 

  3. Rathnasamy R, Thangamuthu R, Alagan V. Sheet-like orthorhombic MoO3 nanostructures prepared via hydrothermal approach for visible-light-driven photocatalytic application. Res Chem Intermed. 2018;44:1647.

    Article  CAS  Google Scholar 

  4. Ding JR, Kim KS. Control of MoOx nanostructures by flame vapor deposition process. Chem Eng J. 2019;375:121955.

    Article  CAS  Google Scholar 

  5. Zhou J, Xu NS, Deng SZ, Chen J, She JC, Wang ZL. Large-area nanowire arrays of molybdenum and molybdenum oxides: synthesis and field emission properties. Adv Mater. 2003;15(21):1835.

    Article  CAS  Google Scholar 

  6. Yuan L, Niu Y, Li R, Zheng L, Wang Y, Liu M, Xu G, Huang L, Xu Y. Molybdenum oxide quantum dots prepared via a one-step stirring strategy and their application as fluorescent probes for pyrophosphate sensing and efficient antibacterial materials. J Mater Chem B. 2018;6(20):3240.

    Article  CAS  Google Scholar 

  7. Wang N, Tang D, Zou H, Jia S, Sun Z, Yang X, Peng J. Synthesis of molybdenum oxide quantum dots with better dispersity and bio-imaging ability by reduction method. Opt Mater. 2018;83:19.

    Article  CAS  Google Scholar 

  8. de Castro IA, Datta RS, Ou JZ, Castellanos-Gomez A, Sriram S, Daeneke T, Kalantar-zadeh K. Molybdenum oxides—from fundamentals to functionality. Adv Mater. 2017;29(40):1701619.

    Article  CAS  Google Scholar 

  9. Thangasamy P, Ilayaraja N, Jeyakumar D, Sathish M. Electrochemical cycling and beyond: unrevealed activation of MoO3 for electrochemical hydrogen evolution reactions. Chem Commun. 2017;53(14):2245.

    Article  CAS  Google Scholar 

  10. Dong W, Shi Z, Ma J, Hou C, Wan Q, Feng S, Cogbill A, Tian ZR. One-pot redox syntheses of heteronanostructures of Ag nanoparticles on MoO3 nanofibers. J Phys Chem B. 2006;110(12):5845.

    Article  CAS  Google Scholar 

  11. Dong W, Zhao H, Li C, Mei J, Chen B, Tang W, Shi Z, Feng S. Hetero-nanostructure of silver nanoparticles on MOx (M = Mo, Ti and Si) and their applications. Sci China Chem. 2011;54:865.

    Article  CAS  Google Scholar 

  12. Li Q, Walter EC, van der Veer W, Murray BJ, Newberg JT, Bohannan EW, Switzer JA, Hemminger JC, Penner RM. Molybdenum disulfide nanowires and nanoribbons by electrochemical/chemical synthesis. J Phys Chem B. 2005;109(8):3169.

    Article  CAS  Google Scholar 

  13. Xiao SJ, Zhao XJ, Zuo J, Huang HQ, Zhang L. Highly photoluminescent MoOx quantum dots: Facile synthesis and application in off-on Pi sensing in lake water samples. Anal Chim Acta. 2016;906:148.

    Article  CAS  Google Scholar 

  14. Wang J, Li Y. Rational synthesis of metal nanotubes and nanowires from lamellar structures. Adv Mater. 2003;15(5):445.

    Article  CAS  Google Scholar 

  15. Hong BH, Bae SC, Lee CW, Jeong S, Kim KS. Ultrathin single-crystalline silver nanowire arrays formed in an ambient solution phase. Science. 2001;294(5541):348.

    Article  CAS  Google Scholar 

  16. Mbindyo JKN, Mallouk TE, Mattzela J, Kratochvilova I, Razavi B, Jackson TN, Mayer TS. Template synthesis of metal nanowires containing monolayer molecular junctions. J Am Chem Soc. 2002;124(15):4020.

    Article  CAS  Google Scholar 

  17. Braun E, Eichen Y, Sivan U, Ben-Yoseph G. DNA-templated assembly and electrode attachment of a conducting silver wire. Nature. 1998;391(6669):775.

    Article  CAS  Google Scholar 

  18. Zhang Y, Dai H. Formation of metal nanowires on suspended single-walled carbon nanotubes. Appl Phys Lett. 2000;77(19):3015.

    Article  CAS  Google Scholar 

  19. Hong K, An M, Song R, Liu L, Xu M. Vapour phase synthesis of aligned molybdenum oxide nanowires at low temperature. Phys status Solidi RRL. 2012;6(2):86.

    Article  CAS  Google Scholar 

  20. Khademi A, Azimirad R, Nien YT, Moshfegh AZ. Field-emission enhancement of molybdenum oxide nanowires with nanoprotrusions. J Nanopart Res. 2011;13(1):115.

    Article  CAS  Google Scholar 

  21. Shakir I, Shahid M, Rana UA, Warsi MF. In situ hydrogenation of molybdenum oxide nanowires for enhanced supercapacitors. RSC Adv. 2014;4(17):8741.

    Article  CAS  Google Scholar 

  22. Das AK, Karan SK, Khatua BB. High energy density ternary composite electrode material based on polyaniline (PANI), molybdenum trioxide (MoO3) and graphene nanoplatelets (GNP) prepared by sono-chemical method and their synergistic contributions in superior supercapacitive performance. Electrochim Acta. 2015;180:1.

    Article  CAS  Google Scholar 

  23. Ghorai TK, Dhak D, Dalai S, Pramanik P. Preparation and photocatalytic activity of nano-sized nickel molybdate (NiMoO4) doped bismuth titanate (Bi2Ti4O11) (NMBT) composite. J Alloys Compd. 2008;463(1–2):390.

    Article  CAS  Google Scholar 

  24. Dong FQ, Wu QS. Synthesis of homogeneous bunched lead molybdate nanobelts in large scale via vertical SLM system at room temperature. Appl Phys A. 2008;91(1):161.

    Article  CAS  Google Scholar 

  25. Zheng D, Feng H, Zhang X, He X, Yu M, Lu X, Tong Y. Porous MoO2 nanowires as stable and high-rate negative electrodes for electrochemical capacitors. Chem Commun. 2017;53(28):3929.

    Article  CAS  Google Scholar 

  26. Zach MP, Ng KH, Penner RM. Molybdenum nanowires by electrodeposition. Science. 2000;290(5499):2120.

    Article  CAS  Google Scholar 

  27. Ren H, Sun S, Cui J, Li X. Synthesis, functional modifications, and diversified applications of molybdenum oxides micro-/nanocrystals: A review. Cryst Growth Des. 2018;18(10):6326.

    Article  CAS  Google Scholar 

  28. Vogl LM, Schweizer P, Wu M, Spiecker E. Transforming layered MoS2 into functional MoO2 nanowires. Nanoscale. 2019;11(24):11687.

    Article  CAS  Google Scholar 

  29. Park WH, Kumar M, Kim J, Chung YS, Park HH. Catalyst free single-step processes to grow crystalline MoO3 nanowires by reactive sputtering method. Mater Sci Semicond Process. 2018;79:40.

    Article  CAS  Google Scholar 

  30. Dong W, Huang H, Zhu Y, Li X, Wang X, Li C, Chen B, Wang G, Shi Z. Room-temperature solution synthesis of Ag nanoparticle functionalized molybdenum oxide nanowires and their catalytic applications. Nanotechnology. 2012;23(42):425602.

    Article  CAS  Google Scholar 

  31. Khandare L, Terdale S. Gold nanoparticles decorated MnO2 nanowires for high performance supercapacitor. Appl Surf Sci. 2017;418:22–9.

    Article  CAS  Google Scholar 

  32. Shakir I, Shahid M, Nadeem M, Kang DJ. Tin oxide coating on molybdenum oxide nanowires for high performance supercapacitor devices. Electrochim Acta. 2012;72:134.

    Article  CAS  Google Scholar 

  33. Maseed H, Petnikota S, Srikanth VVSS, Srinivasan M, Chowdari BVR, Reddy MV, Adams S. Fe2Mo3O8/exfoliated graphene oxide: solid-state synthesis, characterization and anodic application in Li-ion batteries. New J Chem. 2018;42(15):12817.

    Article  CAS  Google Scholar 

  34. Pan X, Li S, Wang Z, Yang LY, Zhu K, Ren L, Lei M, Liu J. Core–shell MoO2/C nanospheres embedded in bubble sheet-like carbon film as lithium ion battery anodes. Mater Lett. 2017;199:139.

    Article  CAS  Google Scholar 

  35. Saha A, Mondal A, Maiti S, Ghosh SC, Mahanty S, Panda AB. A facile method for the synthesis of a C@MoO2 hollow yolk–shell structure and its electrochemical properties as a faradaic electrode. Mater Chem Front. 2017;1(8):1585.

    Article  CAS  Google Scholar 

  36. Chen N, Ni L, Zhou J, Zhu G, Zhang Y, Chen S, Gao F, Lu C, Ji H, Chen J, Wang X, Guo X, Peng L, Ding W, Hou W. Intercalation of alkylamines in layered MoO3 and in-situ carbonization for a high-performance asymmetric supercapacitor. Sustainable Energy Fuels. 2018;2(12):2788.

    Article  CAS  Google Scholar 

  37. Chen X, Liu R, Zeng L, Huang X, Fang Y, Liu J, Xu Y, Chen Q, Wei M, Qian Q. Preparation of hierarchical MoO2@RGO composite and its application for high rate performance lithium-ion batteries. Mater Lett. 2018;212:198.

    Article  CAS  Google Scholar 

  38. Yu F, Liu Y, Zhu Y, Dai F, Zhang L, Wen Z. Polypyrrole@MoO3/reductive graphite oxide nanocomposites as anode material for aqueous supercapacitors with high performance. Mater Lett. 2016;171:104.

    Article  CAS  Google Scholar 

  39. Khandare L, Late DJ. MoO3-rGO nanocomposites for electrochemical energy storage. Appl Surf Sci. 2017;418:2–8.

    Article  CAS  Google Scholar 

  40. Qu G, Li T, Jia S, Zheng H, Li L, Cao F, Wang H, Ma W, Tang Y, Wang J. Rapid and scalable synthesis of Mo-based binary and ternary oxides for electrochemical applications. Adv Funct Mater. 2017;27(29):1700928.

    Article  CAS  Google Scholar 

  41. Deng Y, Tang W, Li W, Chen Y. MnO2-nanowire@NiO-nanosheet core-shell hybrid nanostructure derived interfacial effect for promoting catalytic oxidation activity. Catal Today. 2018;308:58.

    Article  CAS  Google Scholar 

  42. He X, Zhang H, Zhao X, Zhang P, Chen M, Zheng Z, Han Z, Zhu T, Tong Y, Lu X. Stabilized molybdenum trioxide nanowires as novel ultrahigh-capacity cathode for rechargeable zinc ion battery. Adv Sci. 2019;6(14):1900151.

    Article  CAS  Google Scholar 

  43. Shaheen W, Warsi MF, Shahid M, Khan MA, Asghar M, Ali Z, Sarfraz M, Anwar H, Nadeem M, Shakir I. Carbon coated MoO3 nanowires/graphene oxide ternary nanocomposite for high-performance supercapacitors. Electrochim Acta. 2016;219:330.

    Article  CAS  Google Scholar 

  44. Li H, McRae L, Firby CJ, Al-Hussein M, Elezzabi AY. Nanohybridization of molybdenum oxide with tungsten molybdenum oxide nanowires for solution-processed fully reversible switching of energy-storing smart windows. Nano Energy. 2018;47:130.

    Article  CAS  Google Scholar 

  45. Liang R, Cao H, Qian D. MoO3 nanowires as electrochemical pseudocapacitor materials. Chem Commun. 2011;47(37):10305.

    Article  CAS  Google Scholar 

  46. Zeng W, Zhang G, Hou S, Wang T, Duan H. Facile synthesis of graphene@NiO/MoO3 composite nanosheet arrays for high-performance supercapacitors. Electrochim Acta. 2015;151:510.

    Article  CAS  Google Scholar 

  47. Huang L, Zhang F, Li Y, Wang H, Wang Q, Wang C, Xu H, Li H. Chemical reduction implanted oxygen vacancy on the surface of 1D MoO3−x/g-C3N4 composite for boosted LED light-driven photoactivity. J Mater Sci. 2019;54(7):5343.

    Article  CAS  Google Scholar 

  48. Gui Q, Wu L, Li Y, Liu J. Scalable wire-type asymmetric pseudocapacitor achieving high volumetric energy/power densities and ultralong cycling stability of 100 000 times. Adv Sci. 2019;6(10):1802067.

    Article  CAS  Google Scholar 

  49. Gu JI, Lee J, Rhee CK, Sohn Y. Enhanced electrochemical hydrogen evolution over defect-induced hybrid MoO3/Mo3O9·H2O microrods. Appl Surf Sci. 2019;469:348.

    Article  CAS  Google Scholar 

  50. Sarfraz M, Aboud MFA, Shakir I. Molybdenum oxide nanowires based supercapacitors with enhanced capacitance and energy density in ethylammonium nitrate electrolyte. J Alloys Compd. 2015;650:123.

    Article  CAS  Google Scholar 

  51. Gao Q, Wang S, Fang H, Weng J, Zhang Y, Mao J, Tang Y. One-dimensional growth of MoOx-based organic-inorganic hybrid nanowires with tunable photochromic properties. J Mater Chem. 2016;22(11):4709.

    Article  CAS  Google Scholar 

  52. Meduri P, Clark E, Kim JH, Dayalan E, Sumanasekera GU, Sunkara MK. MoO3–x nanowire arrays as stable and high-capacity anodes for lithium-ion batteries. Nano Lett. 2012;12(4):1784.

    Article  CAS  Google Scholar 

  53. Peng H, Cui S, Xie X, Wei G, Sun K, Ma G, Lei Z. Binary tungsten–molybdenum oxides nanoneedle arrays as an advanced negative electrode material for high performance asymmetric supercapacitor. Electrochim Acta. 2019;322:134759.

    Article  CAS  Google Scholar 

  54. Hu M, Jing H, Li T, Wang J, Yang H, Lv R, Chen D. Composite K2Mo4O13/α-MoO3 nanorods: sonochemical preparation and applications for advanced Li+/Na+ pseudocapacitance. J Mater Chem A. 2019;7(18):10954.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 51572022 and 51872025) and the National Key Research and Development Program of China (Grant No. 2016 YFB0701100).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenjun Dong or Minggang Du.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atinafu, D.G., Dong, W. & Du, M. Controllable synthesis and surface modification of molybdenum oxide nanowires: a short review. Tungsten 1, 258–265 (2019). https://doi.org/10.1007/s42864-020-00033-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42864-020-00033-x

Keywords

Navigation