Skip to main content
Log in

False Data Injection Attack Detection for Smart Grid Based on Square Root Unscented Kalman Filtering Estimate with Long Short Term Memory Correction

  • Original Article
  • Published:
Journal of Electrical Engineering & Technology Aims and scope Submit manuscript

Abstract

False Data Injection Attack (FDIA) severely damages the Power System State Estimation that ensures the safe operation of the Smart Grid. This paper proposes to compare the residuals between Square Root Unscented Kalman Filter (SRUKF) estimation and Weighted Least Squares (WLS) estimation with a given threshold value to detect FDIA. Considering that the SRUKF will approach to the wrong state as the attack continues, the Long Short Term Memory prediction model is deployed to correct the attack node state. Our method is compared with SRUKF, Extended Kalman Filter and other methods on IEEE-14 bus simulation experiments and the effectiveness of the proposed detection method has been verified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Canonico R, Sperli G (2023) Industrial cyber-physical systems protection: a methodological review. Comput Secur 135:103531. https://doi.org/10.1016/j.cose.2023.103531

    Article  Google Scholar 

  2. Nguyen TT, Mohammadi F (2023) Cyber-physical power and energy systems with wireless sensor networks: a systematic review. J Electric Eng Technol 18(6):4353–4365. https://doi.org/10.1007/s42835-023-01482-3

    Article  Google Scholar 

  3. Du D, Zhu M, Li X, Fei M, Bu S, Wu L, Li K (2023) A review on cybersecurity analysis, attack detection, and attack defense methods in cyber-physical power systems. J Mod Power Syst Clean Energy 11(3):727–743. https://doi.org/10.35833/MPCE.2021.000604

    Article  Google Scholar 

  4. Husnoo MA, Anwar A, Hosseinzadeh N, Islam SN, Mahmood AN, Doss R (2023) False data injection threats in active distribution systems: a comprehensive survey. Future Gener Comput Syst 140:344–364. https://doi.org/10.1016/j.future.2022.10.021

    Article  Google Scholar 

  5. Pinto SJ, Siano P, Parente M (2023) Review of cybersecurity analysis in smart distribution systems and future directions for using unsupervised learning methods for cyber detection. Energies 16(4):1651. https://doi.org/10.3390/en16041651

    Article  Google Scholar 

  6. Che L, Liu X, Li Z (2019) Fast screening of high-risk lines under false data injection attacks. IEEE Trans Smart Grid 10(4):4003–4014. https://doi.org/10.1109/TSG.2018.2848256

    Article  Google Scholar 

  7. Liu Y, Gao S, Shi J, Wei X, Han Z (2020) Sequential-mining-based vulnerable branches identification for the transmission network under continuous load redistribution attacks. IEEE Trans Smart Grid 11(6):5151–5160. https://doi.org/10.1109/TSG.2020.3003340

    Article  Google Scholar 

  8. Wei L, Sarwat AI, Saad W, Biswas S (2018) Stochastic games for power grid protection against coordinated cyber-physical attacks. IEEE Trans Smart Grid 9(2):684–694. https://doi.org/10.1109/TSG.2016.2561266

    Article  Google Scholar 

  9. Lim IH, Hong S, Choi MS, Lee SJ, Kim TW, Lee SW, Ha BN (2010) Security protocols against cyber attacks in the distribution automation system. IEEE Trans Power Deliv 25(1):448–455. https://doi.org/10.1109/TPWRD.2009.2021083

    Article  Google Scholar 

  10. Abusorrah A, Alabdulwahab A, Li Z, Shahidehpour M (2019) Minimax-regret robust defensive strategy against false data injection attacks. IEEE Trans Smart Grid 10(2):2068–2079. https://doi.org/10.1109/TSG.2017.2788040

    Article  Google Scholar 

  11. Drayer E, Routtenberg T (2020) Detection of false data injection attacks in smart grids based on graph signal processing. IEEE Syst J 14(2):1886–1896. https://doi.org/10.1109/JSYST.2019.2927469

    Article  Google Scholar 

  12. Jorjani M, Seifi H, Varjani AY (2021) A graph theory-based approach to detect false data injection attacks in power system AC state estimation. IEEE Trans Ind Inf 17(4):2465–2475. https://doi.org/10.1109/TII.2020.2999571

    Article  Google Scholar 

  13. Qin Z, Lai Y (2022) Detection and localization of coordinated state-and-topology false data injection attack by multi-modal learning. J Electric Eng Technol 17(5):2649–2662. https://doi.org/10.1007/s42835-022-01084-5

    Article  Google Scholar 

  14. Qiu W, Sun K, Yao W, Wang W, Tang Q, Liu Y (2021) Hybrid data-driven based HVdc ancillary control for multiple frequency data attacks. IEEE Trans Ind Inf 17(12):8035–8045. https://doi.org/10.1109/TII.2021.3063270

    Article  Google Scholar 

  15. Zhang Z, Hu J, Lu J, Cao J, Alsaadi FE (2022) Preventing false data injection attacks in LFC system via the attack-detection evolutionary game model and KF algorithm. IEEE Trans Netw Sci Eng 9(6):4349–4362. https://doi.org/10.1109/TNSE.2022.3199881

    Article  MathSciNet  Google Scholar 

  16. Amin BMR, Taghizadeh S, Maric S, Hossain MJ, Abbas R (2021) Smart grid security enhancement by using belief propagation. IEEE Syst J 15(2):2046–2057. https://doi.org/10.1109/JSYST.2020.3001951

    Article  Google Scholar 

  17. Zhang F, Yang Q (2022) False data injection attack detection in dynamic power grid: a recurrent neural network-based method. Front Energy Res 10:1005660. https://doi.org/10.3389/fenrg.2022.1005660

    Article  Google Scholar 

  18. Wang S, Bi S, Zhang YJA (2020) Locational detection of the false data injection attack in a smart grid: a multilabel classification approach. IEEE Internet Things J 7(9):8218–8227. https://doi.org/10.1109/JIOT.2020.2983911

    Article  Google Scholar 

  19. Yang L, Zhai Y, Li Z (2021) Deep learning for online ac false data injection attack detection in smart grids: an approach using LSTM-autoencoder. J Netw Comput Appl 193:103178. https://doi.org/10.1016/j.jnca.2021.103178

    Article  Google Scholar 

  20. Wu T, Xue W, Wang H, Chung CY, Wang G, Peng J, Yang Q (2021) Extreme learning machine-based state reconstruction for automatic attack filtering in cyber physical power system. IEEE Trans Ind Inf 17(3):1892–1904. https://doi.org/10.1109/TII.2020.2984315

    Article  Google Scholar 

  21. Xue W, Wu T (2020) Active learning-based XGBoost for cyber physical system against generic AC false data injection attacks. IEEE Access 8:144,575-144,584. https://doi.org/10.1109/ACCESS.2020.3014644

    Article  Google Scholar 

  22. Zhao J, Zhang G, La Scala M, Dong ZY, Chen C, Wang J (2017) Short-term state forecasting-aided method for detection of smart grid general false data injection attacks. IEEE Trans Smart Grid 8(4):1580–1590. https://doi.org/10.1109/TSG.2015.2492827

    Article  Google Scholar 

  23. Chen Y, Hayawi K, Zhao Q, Mou J, Yang L, Tang J, Li Q, Wen H (2022) Vector auto-regression-based false data injection attack detection method in edge computing environment. Sensors 22(18):6789. https://doi.org/10.3390/s22186789

    Article  Google Scholar 

  24. Pei C, Xiao Y, Liang W, Han X (2021) A deviation-based detection method against false data injection attacks in smart grid. IEEE Access 9:15499–15509. https://doi.org/10.1109/ACCESS.2021.3051155

    Article  Google Scholar 

  25. Wang Y, Zhang Z, Ma J, Jin Q (2022) KFRNN: An effective false data injection attack detection in smart grid based on Kalman filter and recurrent neural network. IEEE Internet Things J 9(9):6893–6904. https://doi.org/10.1109/JIOT.2021.3113900

    Article  Google Scholar 

  26. Li X, Wang Z, Zhang C, Du D, Fei M (2022) A novel dynamic watermarking-based EKF detection method for FDIAs in smart grid. IEEE-CAA J Autom Sinica 9(7):1319–1322. https://doi.org/10.1109/JAS.2022.105704

    Article  Google Scholar 

  27. Zivkovic N, Saric AT (2018) Detection of false data injection attacks using unscented Kalman filter. J Mod Power Syst Clean Energy 6(5):847–859. https://doi.org/10.1007/s40565-018-0413-5

    Article  Google Scholar 

  28. Khan MNH, Forouzesh M, Siwakoti YP, Li L, Kerekes T, Blaabjerg F (2020) Transformerless inverter topologies for single-phase photovoltaic systems: a comparative review. IEEE J Emerg Sel Top Power Electron 8(1):805–835. https://doi.org/10.1109/JESTPE.2019.2908672

    Article  Google Scholar 

  29. Zhang J, Yuan Y, Zhang J, Yang Y, Xie W (2023) Anomaly detection method based on penalty least squares algorithm and time window entropy for cyber-physical systems. J King Saud Univ Comput Inf Sci 35(10):101,860. https://doi.org/10.1016/j.jksuci.2023.101860

    Article  Google Scholar 

  30. Langner AL, Abur A (2021) Formulation of three-phase state estimation problem using a virtual reference. IEEE Trans Power Syst 36(1):214–223. https://doi.org/10.1109/TPWRS.2020.3004076

    Article  Google Scholar 

  31. Lopes FV, Mouco A, Fernandes RO, Neto FC (2021) Real-world case studies on transmission line fault location feasibility by using m-class phasor measurement units. Electric Power Syst Res 196:107261. https://doi.org/10.1016/j.epsr.2021.107261

    Article  Google Scholar 

  32. Lourenco EM, Coelho EPR, Pal BC (2015) Topology error and bad data processing in generalized state estimation. IEEE Trans Power Syst 30(6):3190–3200. https://doi.org/10.1109/TPWRS.2014.2379512

    Article  Google Scholar 

  33. Jiang S, Li S, Wu H, Hua Y, Xu B, Ding M (2023) Distributed state estimation method based on WLS-AKF hybrid algorithm for active distribution networks. Int J Electric Power Energy Syst 145:108732. https://doi.org/10.1016/j.ijepes.2022.108732

    Article  Google Scholar 

  34. Dang L, Wang W, Chen B (2022) Square root unscented Kalman filter with modified measurement for dynamic state estimation of power systems. IEEE Trans Instrum Measure 71:1–13. https://doi.org/10.1109/TIM.2022.3157005

    Article  Google Scholar 

  35. Fang X, Zhang W, Guo Y, Wang J, Wang M, Li S (2022) A novel reinforced deep RNN-LSTM algorithm: energy management forecasting case study. IEEE Trans Ind Inf 18(8):5698–5704. https://doi.org/10.1109/TII.2021.3136562

    Article  Google Scholar 

  36. Stauch J, Jah M (2015) Unscented Schmidt–Kalman filter algorithm. J Guid Control Dyn 38(1):117–123. https://doi.org/10.2514/1.G000467

    Article  Google Scholar 

  37. Lefebvre T, Bruyninckx H, De Schutter J (2002) Comment on “a new method for the nonlinear transformation of means and covariances in filters and estimators’’. IEEE Trans Autom Control 47(8):1406–1408. https://doi.org/10.1109/TAC.2002.800742

    Article  Google Scholar 

  38. Wang J, Zhou B, Zhao M (2023) Iterative QR decomposition-based parallel diversity noncoherent detection algorithm. Wirel Pers Commun 132(4):2823–2838. https://doi.org/10.1007/s11277-023-10744-2

    Article  Google Scholar 

  39. Wang S, Wang X, Wang S, Wang D (2019) Bi-directional long short-term memory method based on attention mechanism and rolling update for short-term load forecasting. Int J Electric Power Energy Syst 109:470–479. https://doi.org/10.1016/j.ijepes.2019.02.022

    Article  Google Scholar 

  40. Parizad A, Hatziadoniu C (2022) Cyber-attack detection using principal component analysis and noisy clustering algorithms: a collaborative machine learning-based framework. IEEE Trans Smart Grid 13(6):4848–4861. https://doi.org/10.1109/TSG.2022.3176311

    Article  Google Scholar 

  41. Zimmerman RD, Edmundo-Murillo-Sanchez C, Thomas RJ (2011) Matpower: steady-state operations, planning, and analysis tools for power systems research and education. IEEE Trans Power Syst 26(1):12–19. https://doi.org/10.1109/TPWRS.2010.2051168

    Article  Google Scholar 

  42. Mejia-Ruiz GE, Paternina MRA, Rodriguez JR, Ramirez JM, Zamora-Mendez A, Bolivar-O G (2022) A system identification-based modeling framework of bidirectional DC–DC converters for power grids. J Mod Power Syst Clean Energy 10(3):788–799. https://doi.org/10.35833/MPCE.2020.000836

    Article  Google Scholar 

  43. Zhang J, Yang Y, Feng Y (2023) Hybrid time-series prediction method based on entropy fusion feature. Int J Intell Syst 2023:3578867. https://doi.org/10.1155/2023/3578867

    Article  Google Scholar 

  44. Feng H, Han Y, Li K, Si F, Zhao Q (2024) Locational detection of the false data injection attacks via semi-supervised multi-label adversarial network. Int J Electric Power Energy Syst 155:109682. https://doi.org/10.1016/j.ijepes.2023.109682

    Article  Google Scholar 

  45. Kundu A, Sahu A, Serpedin E, Davis K (2020) A3d: attention-based auto-encoder anomaly detector for false data injection attacks. Electric Power Syst Res 189:106795. https://doi.org/10.1016/j.epsr.2020.106795

    Article  Google Scholar 

  46. Wu T, Xue W, Wang H, Chung CY, Wang G, Peng J, Yang Q (2021) Extreme learning machine-based state reconstruction for automatic attack filtering in cyber physical power system. IEEE Trans Ind Inf 17(3):1892–1904. https://doi.org/10.1109/TII.2020.2984315

    Article  Google Scholar 

  47. Lin X, An D, Cui F, Zhang F (2023) False data injection attack in smart grid: attack model and reinforcement learning-based detection method. Front Energy Res 10:1104989. https://doi.org/10.3389/fenrg.2022.1104989

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by Yunnan Province Science and Technology Major Project (202302AD080002); Yunnan Fundamental Research Key Projects (202101AS070016); Yunnan Province Key Laboratory of Computer Technology Application Open Fund (CB22144S073A); Yunnan Province “Xingdian Talents Support Plan” Industrial Innovation Talents Project (Yfgr [2019] No.1096).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Ming Ma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Ma, DM. False Data Injection Attack Detection for Smart Grid Based on Square Root Unscented Kalman Filtering Estimate with Long Short Term Memory Correction. J. Electr. Eng. Technol. (2024). https://doi.org/10.1007/s42835-024-01850-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42835-024-01850-7

Keywords

Navigation