Skip to main content
Log in

Fixed-time stabilization of high-order integrator systems with mismatched disturbances

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The fixed-time stabilization of high-order integrator systems with both matched and mismatched disturbances is investigated. A continuous non-switching control law is designed based on the bi-limit homogeneous technique for arbitrary-order integrator systems. Combining with fixed-time disturbance observer, the proposed continuous control law for the system with matched and mismatched disturbances guarantees that the convergence time is uniformly bounded with respect to any initial states. Finally, the numerical results are provided to verify the efficiency of the developed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Du, H., Li, S., Qian, C.: Finite-time attitude tracking control of spacecraft with application to attitude synchronization. IEEE Trans. Autom. Control 56(11), 2711–2717 (2011)

    Article  MathSciNet  Google Scholar 

  2. Liu, X., Ho, D.W.C., Cao, J., Yu, W.: Discontinuous observers design for finite-time consensus of multiagent systems with external disturbances. IEEE Trans. Neural Netw. Learn. Syst. 28(11), 2826–2830 (2017)

    Article  MathSciNet  Google Scholar 

  3. Liu, X., Cao, J., Yu, W., Song, Q.: Nonsmooth finite-time synchronization of switched coupled neural networks. IEEE Trans. Cybern. 46(10), 2360–2371 (2016)

    Article  Google Scholar 

  4. Tian, B.L., Fan, W.R., Su, R., Zong, Q.: Real-time trajectory and attitude coordination control for reusable launch vehicle in reentry phase. IEEE Trans. Ind. Electron. 62(3), 1639–1650 (2015)

    Article  Google Scholar 

  5. Du, H.B., Wen, G.H., Yu, X.H., Li, S.H., Chen, M.Z.Q.: Finite-time consensus of multiple nonholonomic chained-form systems based on recursive distributed observer. Automatica 62(12), 236–242 (2015)

    Article  MathSciNet  Google Scholar 

  6. Tian, B.L., Lu, H.C., Zuo, Z.Y., Zong, Q.: Multivariable finite-time output feedback trajectory tracking control of quadrotor helicopters. Int. J. Robust Nonlinear Control 28(1), 281–295 (2018)

    Article  MathSciNet  Google Scholar 

  7. Levant, A.: Homogeneity approach to high-order sliding mode design. Automatica 41(5), 923–830 (2005)

    Article  MathSciNet  Google Scholar 

  8. Estrada, A., Fridman, L.: Quasi-continuous hosm control for systems with unmatched perturbations. Automatica 46(11), 1916–1919 (2010)

    Article  MathSciNet  Google Scholar 

  9. Bhat, S.P., Bernstein, D.S.: Lyapunov analysis of finite-time differential equations. In: American Control Conference, pp. 1831–1832. Seattle, WA (1995)

  10. Polyakov, A., Poznyak, A.: Lyapunov function design for finite-time convergence analysis: twisting controller for second-order sliding mode realization. Automatica 45(2), 444–448 (2009)

    Article  MathSciNet  Google Scholar 

  11. Yang, J., Li, S.H., Su, J.Y., Yu, X.H.: Continuous nonsingular terminal sliding mode control for systems with mismatched disturbances. Automatica 49(7), 2287–2291 (2013)

    Article  MathSciNet  Google Scholar 

  12. Andrieu, V., Praly, L., Astolfi, A.: Homogeneous approximation, recursive observer design and output feedback. SIAM J. Control Optim. 47(4), 1814–1850 (2008)

    Article  MathSciNet  Google Scholar 

  13. Zuo, Z.: Non-singular fixed-time consensus tracking for second-order multi-agent networks. Automatica 54(4), 305–309 (2015)

    Article  MathSciNet  Google Scholar 

  14. Meng, D., Zuo, Z.: Signed-average consensus for networks of agents: a nonlinear fixed-time convergence protocol. Nonlinear Dyn. 85(1), 155–165 (2016)

    Article  MathSciNet  Google Scholar 

  15. Ni, J., Liu, C., Liu, X., Shen, T.: Fixed-time dynamic surface high-order sliding mode control for chaotic oscillation in power system. Nonlinear Dyn. 86(1), 401–420 (2016)

    Article  Google Scholar 

  16. Huang, Y., Jia, Y.: Fixed-time consensus tracking control of second-order multi-agent systems with inherent nonlinear dynamics via output feedback. Nonlinear Dyn. 91(2), 1289–1306 (2018)

    Article  Google Scholar 

  17. Yu, X., Li, P., Zhang, Y.: The design of fixed-time observer and finite-time fault-tolerant control for hypersonic gliding vehicles. IEEE Trans. Ind. Electron. 65(5), 4135–4344 (2018)

    Article  Google Scholar 

  18. Polyakov, A.: Nonlinear feedback design for fixed-time stabilization of linear control systems. IEEE Trans. Autom. Control 57(8), 2106–2110 (2012)

    Article  MathSciNet  Google Scholar 

  19. Tian, B.L., Zuo, Z.Y., Yan, X.M., Wang, H.: A fixed-time output feedback control scheme for double integrator systems. Automatica 80, 17–24 (2017)

    Article  MathSciNet  Google Scholar 

  20. Tian, B.L., Lu, H.C., Zuo, Z.Y., Yang, W.: Fixed-time leader-follower output feedback consensus for second-order multi-agent systems. In: IEEE Transactions on Cybernetics, https://doi.org/10.1109/TCYB.2018.2794759 (2018)

  21. Polyakov, A., Efimov, D., Perruquetti, W.: Finite-time and fixed-time stabilization: Implicit lyapunov function approach. Automatica 51(2), 332–340 (2015)

    Article  MathSciNet  Google Scholar 

  22. Laghrouche, S., Harmouche, M., Chitour, Y.: Stabilization of perturbed integrator chains using lyapunov-based homogeneous controllers. arXiv:1303.5330 [math.OC] (2013)

  23. Bhat, S.P., Bernstein, D.S.: Geometric homogeneity with applications to finite-time stability. Math. Control Signals Syst. 17(2), 101–127 (2005)

    Article  MathSciNet  Google Scholar 

  24. Defoort, M., Floquet, T., Kokosy, A., Perruqetti, W.: A novel higher order sliding mode control scheme. Syst. Control Lett. 58(2), 102–108 (2009)

    Article  MathSciNet  Google Scholar 

  25. Tian, B.L., Liu, L.H., Lu, H.C.: Multivariable finite time attitude control for quadrotor UAV: theory and experimentation. IEEE Trans. Ind. Electron. 65(3), 2567–2577 (2018)

    Article  Google Scholar 

  26. Yao, X.M., Guo, L.: Composite anti-disturbance control for Markovian jump nonlinear systems via disturbance observer. Automatica 49(8), 2538–2545 (2013)

    Article  MathSciNet  Google Scholar 

  27. Yao, X.M., Guo, L., Wu, L.G., Dong, H.R.: Static anti-windup design for nonlinear Markovian jump systems with multiple disturbances. Inf. Sci. 418–419, 169–183 (2017)

    Article  Google Scholar 

  28. Tian, B.L., Yin, L.P., Wang, H.: Finite-time reentry attitude control based on adaptive multivariable disturbance compensation. IEEE Trans. Ind. Electron. 62(9), 5889–5898 (2015)

    Article  Google Scholar 

  29. Rosier, L.: Homogeneous Lyapunov function for homogeneous continuous vector field. Syst. Control Lett. 19(6), 463–473 (1992)

    Article  MathSciNet  Google Scholar 

  30. Bernuau, E., Efimov, D., Perruquetti, W., Polyakov, A.: On homogeneity and its application in sliding mode control. J. Frankl. Inst. 351(4), 1866–1901 (2014)

    Article  MathSciNet  Google Scholar 

  31. Munkres, J.R.: Topology a First Course. Prentice-Hall, Englewood Cliffs (1975)

    MATH  Google Scholar 

  32. Shtessel, Y.B., Shkolnikov, I.A., Levant, A.: Smooth second-order sliding mode: missile guidance application. Automatica 43(8), 1470–1476 (2007)

    Article  MathSciNet  Google Scholar 

  33. Angulo, M.T., Moreno, J.A., Fridman, L.: Robust exact uniformly convergent arbitrary order differentiator. Automatica 49(8), 2489–2495 (2013)

    Article  MathSciNet  Google Scholar 

  34. Filippov, A.F.: Differential Equations with Discontinuous Right Hand Sides. Kluwer Academic Publishers, The Netherlands (1975)

    Google Scholar 

  35. Levant, A.: Higher-order sliding modes, differentiation and output-feedback control. Int. J. Control 76(9/10), 924–941 (2003)

    Article  MathSciNet  Google Scholar 

  36. Hurwitz, A.: On the conditions under which an equation has only roots with negative real parts. Mathematische Annelen 46, 273–284 (1985)

    Article  Google Scholar 

  37. Nie, Y.Y., Xie, X.K.: New criteria for polynomial stability. IMA J. Math. Control Inf. 4(1), 1–12 (1987)

    Article  MathSciNet  Google Scholar 

  38. Xie, X.K.: A new method to study the stability of linear systems (chinese). In: Proceedings of the First National Conference on Mechanics, Beijing, China, (1957)

Download references

Acknowledgements

The work was done when the authors were with the University of Manchester, UK, and it was supported in part by the National Natural Science Foundation of China (Grant Nos. 61673034, 61673294 and 61773278) and in part by the Ministry of Education Equipment Development Fund under Grant Nos. 6141A02033311 and 6141A02022328.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bailing Tian.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Appendix

Appendix

For brevity, define \(A^n_1(s)\) and \(A^n_2(s)\) as follows

$$\begin{aligned} A^n_1(s)=s^n+k_ns^{n-1}+\cdots +k_2s+k_1 \end{aligned}$$
(26)

and

$$\begin{aligned} A^n_2(s)=s^n+k'_ns^{n-1}+\cdots +k'_2s+k'_1 \end{aligned}$$
(27)

with

$$\begin{aligned} k'_i=3k_i,\quad i=1,2,\ldots ,n \end{aligned}$$
(28)

For \(n\le 4\), a direct application of Routh criterion [36] shows that \(A^n_2(s)\) is Hurwitz if the parameters \(k_i\) are selected such that the polynomial \(A^n_1(s)\) is Hurwitz. For example, \(A^4_1(s)\) with \(n=4\) in (26) is Hurwitz if and only if the condition

$$\begin{aligned} k_2k_3k_4>k^2_2+k^2_4k_1,\quad k_i>0, \quad i=1,\ldots ,4 \end{aligned}$$
(29)

holds. Obviously, the condition \( k'_2k'_3k'_4>k'^2_2+k'^2_4k'_1\) with \(k'_i>0,i=1,\ldots ,4\) holds when \(k'_i\) are defined by (28) with the selection of \(k_i\) in (29). It follows that \(A^4_2(s)\) is Hurwitz if \(A^4_1(s)\) is Hurwitz. Similarly, it can be easily found that the conclusion holds for \(n=1,2,3\).

For \(n>4\), the polynomial \(A^n_2(s)\) may not be Hurwitz even if \(A^n_1(s)\) is Hurwitz. In this case, the following lemma can be applied to select \(k_i,i=1,\ldots ,n\) such that \(A^n_1(s)\) and \(A^n_2(s)\) are both Hurwitz.

Lemma 5

[37] The polynomial \(a_ns^n+\cdots +a_1x+a_0\) is Hurwitz if the condition \(a_ia_{i+1}\ge 3a_{i-1}a_{i+2},i=1,\ldots ,n-2\) with \(a_j>0,j=0,\ldots ,n\) holds.

Lemma 5 was first proposed in [38] using Chinese, and its English description was provided in [37]. It follows from Lemma 5 that the positive real numbers \(k_j,j=1,\ldots ,n\) can be chosen as

$$\begin{aligned} k_ik_{i+1}\ge 3k_{i-1}k_{i+2},\quad i=2,\ldots ,n-1 \end{aligned}$$
(30)

with the definition \(k_{n+1}=1\) such that \(A^n_1(s)\) is Hurwitz. An equivalent expression of (30) is

$$\begin{aligned} (3k_i)(3k_{i+1})\ge 3(3k_{i-1})(3k_{i+2}),\quad i=2,\ldots ,n-1 \end{aligned}$$
(31)

Taking into account (28), (31) means the following inequality

$$\begin{aligned} k'_ik'_{i+1}\ge 3k'_{i-1}k'_{i+2},\quad i=2,\ldots ,n-1 \end{aligned}$$
(32)

holds with the definition \(k'_{n+1}=1\). Although \(k'_{n+1}=k_{n+1}=1\) does not satisfy the relationship (28), it can be easily verified that (32) can be derived from (31) when \(i=n-1\). It follows from Lemma 5 that the polynomial \(A^n_2(s)\) is Hurwitz with the positive real numbers \(k'_i\) satisfying (28) and (30). Therefore, the positive real numbers \(k_i\) can be selected in terms of (30) to ensure that \(A^n_1(s)\) and \(A^n_2(s)\) are both Hurwitz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, B., Lu, H., Zuo, Z. et al. Fixed-time stabilization of high-order integrator systems with mismatched disturbances. Nonlinear Dyn 94, 2889–2899 (2018). https://doi.org/10.1007/s11071-018-4532-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4532-3

Keywords

Navigation