Skip to main content

Advertisement

Log in

Asymmetrical Magnets in Rotor Structure of a Permanent Magnet Brushless DC Motor for Cogging Torque Minimization

  • Original Article
  • Published:
Journal of Electrical Engineering & Technology Aims and scope Submit manuscript

Abstract

Drive motors are the mainstay in our day-to-day life. In drive motors, the Permanent Magnet Brushless DC (PMBLDC) motors are more prominent. It has excellent torque-speed characteristics. Compared to others, it has less maintenance cost. The Cogging torque is one of the crucial obstructions in PMBLDC Motor. It has always been a severe impact on the high performance of the machine. The cogging torque leads to the generation of immense vibration and noise. This paper introduces the magnet shaping method for the decrement of cogging torque in a PMBLDC motor. This asymmetrical rotor structure reduces the magnet locking between the rotor and stator. To obtain the asymmetrical rotor structure here, introduced rotor magnets with thicknesses 2.5 mm and 2 mm. Each of the two has the same pole arc 630. These magnets had placed alternatively. This paper also derived an analytical expression of cogging torque with asymmetrical rotor magnets using the Virtual Work Method (VWM). The PMBLDC motor with the asymmetrical rotor had analyzed by 3D Finite Element Analysis (FEA). The simulation result by FEA had compared with the analytical results. It figured out that the cogging torque reduction in the two compared findings is almost alike. The proposed asymmetrical rotor structure is advantageous in minimizing the cogging torque.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Zhang H, Liu G, Zheng S, Zhou X (2020) High-precision sensorless optimal commutation deviation correction strategy of BLDC motor with asymmetric back-EMF. IEEE Trans Ind Inform 17(8):5250–5259. https://doi.org/10.1109/TII.2020.3027010

    Article  Google Scholar 

  2. Bosso A, Conficoni C, Raggini D, Tilli A (2020) A computational-effective field oriented control strategy for accurate and efficient electric propulsion of unmanned aerial vehicles’. IEEE/ASME Trans Mech. https://doi.org/10.1109/TMECH.2020.3022379

    Article  Google Scholar 

  3. Huang C-L, Wu C-J, Yang S-C (2020) Full-region sensorless BLDC drive for permanent magnet motor using pulse amplitude modulation with DC current sensing. In: Proceedings of the 2020 IEEE transactions on industrial electronics. doi: https://doi.org/10.1109/TIE.2020.3034859

  4. Fazil M, Rajagopal KR (2010) A novel air-gap profile of single-phase permanent-magnet brushless DC motor for starting torque improvement and cogging torque reduction. IEEE Trans Magnet 46(11):3928–3932. https://doi.org/10.1109/TMAG.2010.2057514

    Article  Google Scholar 

  5. Hwang S-M, Eom J-B, Hwang G-B, Jeong W-B, Jung Y-H (2020) Cogging torque and acoustic noise reduction in permanent magnet motors by teeth pairing. IEEE Trans Magnet 36(5):3144–3146. https://doi.org/10.1109/20.908714

    Article  Google Scholar 

  6. Leitner S, Gruebler H, Muetze A (2019) Cogging torque minimization and performance of the sub-fractional HP BLDC claw-pole motor. IEEE Trans Ind Appl 55(5):4653–4664. https://doi.org/10.1109/TIA.2019.2923569

    Article  Google Scholar 

  7. Park Y-U, Cho J-H, Kim D-K (2019) Cogging torque reduction of single-phase brushless DC motor with a tapered air-gap using optimizing notch size and position. IEEE Trans Ind Appl 55(5):4653–4664

    Article  Google Scholar 

  8. Mizanoor Rahman M, Kim K-T, Hur J (2014) Design and optimization of neodymium-free SPOKE-type motor with segmented wing-shaped PM. IEEE Trans Magnet 50(2):865–868. https://doi.org/10.1109/TMAG.2013.2282151

    Article  Google Scholar 

  9. Doss MAN, Brindha R, Mohanraj K, Dash SS, Kavya KM (2018) A novel method for cogging torque reduction in permanent magnet brushless DC motor using T-shaped bifurcation in stator teeth. Prog Electromag Res Magnet 66: 99–107. doi:https://doi.org/10.2528/PIERM17110902.

  10. Hwang K-Y, Rhee S-B, Yang B-Y, Kwon B-I (2007) Rotor pole design in spoke-type brushless DC motor by response surface method. IEEE Trans Magnet 43(4):1833–1836. https://doi.org/10.1109/TMAG.2007.892616

    Article  Google Scholar 

  11. Kim H-S, You Y-M, Kwon B-I (2013) Rotor shape optimization of interior permanent magnet BLDC motor according to magnetization direction. IEEE Trans Magnet 49(5):2193–2196. https://doi.org/10.1109/TMAG.2013.2242056

    Article  Google Scholar 

  12. Lee S-K, Kang G-H, Hur J, Kim B-W (2012) Stator and rotor shape designs of interior permanent magnet type brushless DC motor for reducing torque fluctuation. IEEE Trans Magnet 48(11):4662–4665. https://doi.org/10.1109/TMAG.2012.2201455

    Article  Google Scholar 

  13. Han K-J, Cho H-S, Cho D-H, Jung H-K (2000) Optimal core shape design for cogging torque reduction of brushless DC motor using genetic algorithm. IEEE Trans Magnet 36(4):1927–1931. https://doi.org/10.1109/20.877824

    Article  Google Scholar 

  14. Arun Noyal Doss M, Vijayakumar S, Jamal Mohideen A, Sathiah Kannan K, Balaji Sairam ND, Karthik K (2017) Reduction in cogging torque and flux per pole in BLDC motor by adapting U-clamped magnetic poles. IJPEDS 8(1): 297–304.doi: https://doi.org/10.11591/ijpeds. v8i1

  15. Nam D-W, Lee K-B, Pyo H-J, Jeong M-J, Yang S-H, Kim W-H, Jang H-K (2021) A study on core skew considering manufacturability of double-layer spoke-type PMSM. Energies 14(3):610. https://doi.org/10.3390/en14030610

    Article  Google Scholar 

  16. Goryca Z, Rozowicz S, Rozowicz A, Pakosz A, Lesko M, Wachta H (2020) Impact of selected methods of cogging torque reduction in multipolar permanent-magnet machines. Energies 13(22):6108. https://doi.org/10.3390/en13226108

    Article  Google Scholar 

  17. Kim Y-H, Yang B-S, Kim C-J (2006) Noise source identification of small fan-BLDC motor system for refrigerators. Int J Rotat Mach. https://doi.org/10.1155/IJRM/2006/63214

    Article  Google Scholar 

  18. Doss MAN, Jeevananthan S, Dash SS, Jahir HM (2013) Critical evaluation of cogging torque in BLDC motor with various techniques. Int J Automat Control 7(3):135–146. https://doi.org/10.1504/IJAAC.2013.057042

    Article  Google Scholar 

  19. Saied SA, Abbaszadeh K (2009) Cogging torque reduction in brushless DC motors using slot-opening shift. Adv Elect Comput Eng 9(1):5

    Article  Google Scholar 

  20. Islam MS, Islam R, Sebastian T, Chandy A, Ozsoylu SA (2011) Cogging torque minimization in PM motors using robust design approach. IEEE Trans Ind Appl 47(4):1661–1669. https://doi.org/10.1109/TIA.2011.2154350

    Article  Google Scholar 

  21. Doss MAN, Mohanraj K, Kalyanasundaram V, Karthik K (2016) Reduction of cogging torque by adapting bifurcated stator slots and minimization of harmonics and torque ripple in brushless DC motor. Int J Power Elect Drive Syst 7(3):781–789. https://doi.org/10.11591/ijpeds.v7i3.10768

    Article  Google Scholar 

  22. Abbaszadeh K, Jafari M (2011) Optimizing cogging torque reduction in slot opening shift method for BLDC motor by RSM. IEEE. https://doi.org/10.1109/PEDSTC.2011.5742496

    Article  Google Scholar 

  23. Chen SX, Jabbar MA, Zhang QD, Liu ZJ (1996) New challenge: electromagnetic design of BLDC motor for high speed fluid filim bearing spindles used in hard disk drive. IEEE Trans Magnet 32(5):3854–3856. https://doi.org/10.1109/20.539195

    Article  Google Scholar 

  24. Sumega M, Rafajdus P, Stulrajter M (2020) Current harmonics controller for reduction of acoustic noise, vibrations and torque ripple caused by cogging torque in PM motors under FOC operation. Energies 13(10):2534. https://doi.org/10.3390/en13102534

    Article  Google Scholar 

  25. Doss MAN, Jeevananthan S, Dash SS, Hussain MJ (2013) Critical evaluation of cogging torque in BLDC motor with various techniques. Int J Autom Control 7(3):135–146

    Article  Google Scholar 

  26. Dini P, Saponara S (2019) Cogging torque reduction in brushless motors by a nonlinear control technique. Energies. https://doi.org/10.3390/en12112224

    Article  Google Scholar 

  27. Praveen RP, Ravichandran MH, Sadasivan Achari VT, Jagathy Raj VP, Madhu G, Bindu GR, Dubas F (2011) Optimal design of a surface mounted permanent-magnet BLDC motor for spacecraft applications. IEEE. https://doi.org/10.1109/ICETECT.2011.5760152

    Article  Google Scholar 

  28. Anuja TA, Arun Noyal Doss M (2021) Reduction of cogging torque in surface mounted permanent magnet brushless DC motor by adapting rotor magnetic displacement. Energies 14(10): 2861. doi: https://doi.org/10.3390/en14102861.

  29. Srisiriwanna T, Konghirun M (2012) A study of cogging torque reduction methods in brushless DC motor. IEEE. https://doi.org/10.1109/ECTICon.2012.6254191

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Arun Noyal Doss.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anuja, T.A., Doss, M.A.N. Asymmetrical Magnets in Rotor Structure of a Permanent Magnet Brushless DC Motor for Cogging Torque Minimization. J. Electr. Eng. Technol. 17, 1271–1279 (2022). https://doi.org/10.1007/s42835-021-00991-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42835-021-00991-3

Keywords

Navigation