Skip to main content
Log in

A novel integrated microbial and laccase-anchored carbon catalyst system for the effective treatment of toxic organic and recalcitrant-rich municipal landfill leachate

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

Municipal landfill leachate (MLL) contamination in surface water is a critical global issue due to the high concentration of toxic organics and recalcitrants. The biological treatment of MLL is ineffective due to an elevated concentration of ammoniacal nitrogen, which restricts the production of the recalcitrant degrading laccase enzyme. In this context, integrating an external laccase-anchored carbon catalyst (LACC) matrix system with the microbial system could be an efficient strategy to overcome the drawbacks of conventional biological MLL treatment technologies. In the present study, the LACC matrix was synthesized by utilizing nanoporous activated carbon (NAC) functionalized ethylene diamine (EDA) and glutaraldehyde (GA) (GA/EDA/NAC) matrix for the anchoring of laccase. The maximum anchoring capacity of laccase onto GA/EDA/NAC was achieved to be 139.65 U/g GA/EDA/NAC at the optimized anchoring time, 60 min; pH, 5; temperature, 30 °C, and mass of GA/EDA/NAC, 300 mg and was confirmed by Fourier transform Infrared Spectroscopy (FT-IR), Scanning Electron Microscope (SEM), and X-ray Diffraction (XRD) analyses. Further, the mechanistic study revealed the involvement of covalent bonding in the anchoring of laccase onto the functionalized surface of the GA/EDA/NAC matrix. The adsorption isotherm and kinetics of laccase anchoring onto the GA/EDA/NAC matrix were performed to evaluate its field-level application. Subsequently, the sequential microbial system (I-stage bacterial treatment followed by II-stage fungal treatment) and III-stage LACC matrix system could effectively reduce the COD by 94.2% and phenol by 92.36%. Furthermore, the Gas Chromatography-Mass Spectrophotometry (GC–MS) and FT-IR analyses confirmed the effective degradation of organic compounds and recalcitrants by the integrated microbial and LACC matrix system. The study suggested that the application of the LACC matrix system has resulted in the complete treatment of real-time MLL by overcoming the negative interference of elevated ammoniacal nitrogen concentration. Thus, the integrated microbial and LACC matrix approach could be considered to effectively treat the MLL without any secondary pollution generation.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article and its supplementary materials.

References

  1. Narayana T (2009) Municipal solid waste managemexnt in India: From waste disposal to recovery of resources? Waste Manag 29(3):1163–1166. https://doi.org/10.1016/j.wasman.2008.06.038

    Article  CAS  PubMed  Google Scholar 

  2. Hanrahan D, Srivastava S, Sita RA (2006). Improving management of municipal solid waste in India—Overview and challenges. Environment and Social Development Unit, South Asia Region. The World Bank. http://hdl.handle.net/10986/19463

  3. Uddin M et al (2023) The role of wastewater treatment technologies in municipal landfill leachate treatment. Biotechnology for emerging pollutants remediation and energy conversion. Springer Nature Singapore, Singapore. https://doi.org/10.1007/978-981-99-1179-0_7

    Chapter  Google Scholar 

  4. Ramani et al (2021) Recent advances in understanding the role of wastewater treatment processes for the removal of plastic derived nitrogen compounds in municipal landfill leachate. Soil Recycl Manag Anthropocene Era. https://doi.org/10.1007/978-3-030-51886-8_1

    Article  Google Scholar 

  5. Keyikoglu R et al (2021) A review on treatment of membrane concentrates generated from landfill leachate treatment processes. Sep Purif 259:118182. https://doi.org/10.1016/j.seppur.2020.118182

    Article  CAS  Google Scholar 

  6. Karatas et al (2022) Perfluorooctanoic acid (PFOA) removal from real landfill leachate wastewater and simulated soil leachate by electrochemical oxidation process. Environ Technol Innov 28:102954. https://doi.org/10.1016/j.eti.2022.102954

    Article  CAS  Google Scholar 

  7. Liu M et al (2021) Accelerated Fe2+ regeneration in an effective electro-fenton process by boosting internal electron transfer to a nitrogen-conjugated Fe (III) complex. Environ Sci Technol 55(9):6042–6051. https://doi.org/10.1021/acs.est.0c08018

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Lee J, Von Gunten U, Kim JH (2020) Persulfate-based advanced oxidation: critical assessment of opportunities and roadblocks. Environ Sci Technol 54(6):3064–3081. https://doi.org/10.1021/acs.est.9b07082

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Wang X et al (2021) Flow-through heterogeneous electro-Fenton system based on the absorbent cotton derived bulk electrode for refractory organic pollutants treatment. Sep Purif Technol 276:119266. https://doi.org/10.1016/j.seppur.2021.119266

    Article  CAS  Google Scholar 

  10. Xiong et al (2018) Mature landfill leachate treatment by the MBBR inoculated with biocarriers from a municipal wastewater treatment plant. Proc Saf Environ Prot 119:304–310. https://doi.org/10.1016/j.psep.2018.08.019

    Article  CAS  Google Scholar 

  11. Tsui et al (2020) Food waste leachate treatment using an upflow anaerobic sludge bed (UASB): effect of conductive material dosage under low and high organic loads. Bioresour Technol 304:122738. https://doi.org/10.1016/j.biortech.2020.122738

    Article  CAS  PubMed  Google Scholar 

  12. Wang et al (2018) Treatment of landfill leachate using activated sludge technology: a review. Archaea. https://doi.org/10.1155/2018/1039453

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  13. Tałałaj IA, Biedka P, Bartkowska I (2019) Treatment of landfill leachates with biological pretreatments and reverse osmosis. Environ Chem Lett 17(3):1177–1193. https://doi.org/10.1007/s10311-019-00860-6

    Article  CAS  Google Scholar 

  14. Somani M et al (2019) Comprehensive assessment of the leachate quality and its pollution potential from six municipal waste dumpsites of India. Bioresource Technol Rep 6:198–206. https://doi.org/10.1016/j.biteb.2019.03.003

    Article  Google Scholar 

  15. Ahmadzadeh S, Dolatabadi M (2018) Modeling and kinetics study of electrochemical peroxidation process for mineralization of bisphenol a; a new paradigm for groundwater treatment. J Mol Liq 254:76–82. https://doi.org/10.1016/j.molliq.2018.01.080

    Article  CAS  Google Scholar 

  16. Lindamulla et al (2022) Municipal solid waste landfill leachate characteristics and their treatment options in tropical countries. Curr Pollut Rep 8(3):273–287. https://doi.org/10.1007/s40726-022-00222-x

    Article  CAS  Google Scholar 

  17. da Silva PSG et al (2022) Landfill leachate biological treatment: perspective for the aerobic granular sludge technology. Environ Sci Pollut Res 29(30):45150–45170. https://doi.org/10.1007/s11356-022-20451-3

    Article  CAS  Google Scholar 

  18. Miao L et al (2019) Recent advances in nitrogen removal from landfill leachate using biological treatments–a review. J Environ Manag 235:178–185. https://doi.org/10.1016/j.jenvman.2019.01.057

    Article  CAS  Google Scholar 

  19. Song JY (2020) A pilot-scale study on the treatment of landfill leachate by a composite biological system under low dissolved oxygen conditions: Performance and microbial community. Bioresour Technol 296:122344. https://doi.org/10.1016/j.biortech.2019.122344

    Article  CAS  PubMed  Google Scholar 

  20. Golwala H et al (2022) Advancement and challenges in municipal landfill leachate treatment–the path forward! ACS ES&T Water 2(8):1289–1300. https://doi.org/10.1021/acsestwater.2c00216

    Article  CAS  Google Scholar 

  21. Bhardwaj P et al (2022) Laccase-assisted degradation of emerging recalcitrant compounds-a review. Bioresour Technol. https://doi.org/10.1016/j.biortech.2022.128031

    Article  PubMed  Google Scholar 

  22. Pounsamy M et al (2019) A novel protease-immobilized carbon catalyst for the effective fragmentation of proteins in high-TDS wastewater generated in tanneries: spectral and electrochemical studies. Environ Res 172:408–419. https://doi.org/10.1016/j.envres.2019.01.062

    Article  CAS  PubMed  Google Scholar 

  23. Ali NS et al (2023) A high throughput screening process and quick isolation of novel lignin-degrading microbes from large number of natural biomasses. Biotechnol Rep 39:e00809. https://doi.org/10.1016/j.btre.2023.e00809

    Article  CAS  Google Scholar 

  24. Kim YK, Park SK, Do KS (2003) Treatment of landfill leachate by white rot fungus in combination with zeolite filters. J Environ Sci Heal - A Tox Hazard Subst Environ Eng 38(4):671–683. https://doi.org/10.1081/ESE-120016932

    Article  CAS  Google Scholar 

  25. Tien M, Kirk TK (1988) Lignin peroxidase of Phanerochaete chrysosporium. Methods Enzymol 161:238–249. https://doi.org/10.1016/0076-6879(88)61025-1

    Article  CAS  Google Scholar 

  26. Ramani K et al (2010) Immobilization of acidic lipase derived from Pseudomonas gessardii onto mesoporous activated carbon for the hydrolysis of olive oil. J Mol Catal B Enzym 62:58–65. https://doi.org/10.1016/j.molcatb.2009.09.004

    Article  CAS  Google Scholar 

  27. Ramani K et al (2012) Surface functionalized mesoporous activated carbon for the immobilization of acidic lipase and their application to hydrolysis of waste cooked oil: isotherm and kinetic studies. Process Biochem 47(3):435–445. https://doi.org/10.1016/j.procbio.2011.11.025

    Article  CAS  Google Scholar 

  28. Uddin M et al (2021) Biosequestration of lignin in municipal landfill leachate by tailored cationic lipoprotein biosurfactant through Bacillus tropicus valorized tannery solid waste. J Environ Manag 300:113755. https://doi.org/10.1016/j.jenvman.2021.113755

    Article  CAS  Google Scholar 

  29. Suganthi H, Kandasamy R (2017) A novel single step synthesis and surface functionalization of iron oxide magnetic nanoparticles and thereof for the copper removal from pigment industry effluent. Sep Purif Technol 188:458–467. https://doi.org/10.1016/j.seppur.2017.07.059

    Article  CAS  Google Scholar 

  30. Ozcan S, Tor A, Aydin ME (2010) Determination of polycyclic aromatic hydrocarbons in waters by ultrasound-assisted emulsification-microextraction and gas chromatography-mass spectrometry. Anal Chim Acta 665(2):193–199. https://doi.org/10.1016/j.aca.2010.03.047

    Article  CAS  PubMed  Google Scholar 

  31. Bajwa PK, Arora DS (2009) Comparative production of ligninolytic enzymes by Phanerochaete chrysosporium and Polyporus sanguineus. Can J Microbiol 55:1397–1402. https://doi.org/10.1139/W09-094

    Article  CAS  PubMed  Google Scholar 

  32. Smaoui Y et al (2018) A new approach for detoxification of landfill leachate using Trametes trogii. Environ Eng Res 24(1):144–149. https://doi.org/10.4491/eer.2018.014

    Article  MathSciNet  Google Scholar 

  33. Pounsamy M et al (2019) Removal of fat components in high TDS leather wastewater by saline-tolerant lipase-assisted nanoporous-activated carbon. Appl Biochem Biotechnol 187:474–492. https://doi.org/10.1007/s12010-018-2833-0

    Article  CAS  PubMed  Google Scholar 

  34. Saranya P, Ranjitha S, Sekaran G (2015) Immobilization of thermotolerant intracellular enzymes on functionalized nanoporous activated carbon and application to degradation of an endocrine disruptor: kinetics, isotherm and thermodynamics studies. RSC Adv 5(81):66239–66259. https://doi.org/10.1039/C5RA11279F

    Article  CAS  Google Scholar 

  35. Reid ID (1979) The influence of nutrient balance on lignin degradation by the white-rot fungus Phanerochaete chrysosporium. Canad J Bot 57(19):2050–2058. https://doi.org/10.1139/b79-255

    Article  CAS  Google Scholar 

  36. Lofrano G et al (2013) Chemical and biological treatment technologies for leather tannery chemicals and wastewaters: a review. Sci Total Environ 461:265–328. https://doi.org/10.1016/j.scitotenv.2013.05.004

    Article  ADS  CAS  PubMed  Google Scholar 

  37. Mannacharaju M, Somasundaram S, Ganesan S (2020) Treatment of post tanning wastewater with minimum sludge generation using sequential anoxic/oxic bioreactor and its microbial community profile. J Water Process Eng 35:101244. https://doi.org/10.1016/j.jwpe.2020.101244

    Article  Google Scholar 

  38. de Castro TMT et al (2019) Anaerobic co-digestion of industrial landfill leachate and glycerin: methanogenic potential, organic matter removal and process optimization. Environ Technol 41:2583–2593. https://doi.org/10.1080/09593330.2019.1575915

    Article  CAS  PubMed  Google Scholar 

  39. Amaral MC et al (2017) Performance evaluation of startup for a yeast membrane bioreactor (MBRy) treating landfill leachate. J Environ Sci Health A 52:1352–1360. https://doi.org/10.1080/10934529.2017.1357407

    Article  CAS  Google Scholar 

  40. Maheepala SS et al (2022) Stable denitrification performance of a mesh rotating biological reactor treating municipal wastewater. Environ Technol Innov 27:102543. https://doi.org/10.1016/j.eti.2022.102543

    Article  CAS  Google Scholar 

  41. Xiong J et al (2018) Mature landfill leachate treatment by the MBBR inoculated with biocarriers from a municipal wastewater treatment plant. Process Saf Environ Prot 119:304–310. https://doi.org/10.1016/j.psep.2018.08.019

    Article  CAS  Google Scholar 

  42. Paskuliakova A et al (2016) Phycoremediation of landfill leachate with chlorophytes: phosphate a limiting factor on ammonia nitrogen removal. Water Res 99:180–187. https://doi.org/10.1016/j.watres.2016.04.029

    Article  CAS  PubMed  Google Scholar 

  43. Dan NH, Le Luu T (2021) High organic removal of landfill leachate using a continuous flow sequencing batch biofilm reactor (CF-SBBR) with different biocarriers. Sci Total Environ 787:147680. https://doi.org/10.1016/j.scitotenv.2021.147680

    Article  ADS  CAS  PubMed  Google Scholar 

  44. Duyar A et al (2021) Treatment of landfill leachate using single-stage anoxic moving bed biofilm reactor and aerobic membrane reactor. Sci Total Environ 776:145919. https://doi.org/10.1016/j.scitotenv.2021.145919

    Article  ADS  CAS  PubMed  Google Scholar 

  45. Zhu Z et al (2021) Efficient treatment of mature landfill leachate with a novel composite biological trickle reactor developed using refractory domestic waste and aged refuse. J Clean Prod 305:127194. https://doi.org/10.1016/j.jclepro.2021.127194

    Article  CAS  Google Scholar 

  46. Luo H et al (2020) Recent advances in municipal landfill leachate: a review focusing on its characteristics, treatment, and toxicity assessment. Sci Total Environ 703:135468. https://doi.org/10.1016/j.scitotenv.2019.135468

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Maseed Uddin acknowledge the Department of Science and Technology, Ministry of Science and Technology, Government of India for providing the INSPIRE fellowship [DST/INSPIRE Fellowship/2019/IF190897] to carry out the research. Ramani Kandasamy. sincerely thank the Department of Science and Technology, Ministry of Science and Technology, New Delhi, for funding the project under the Scheme "Scheme for Young Scientists and Technologists (SYST)-Science for Equity and Empowerment Division (SEED)”; Project No: SP/YO/2019/1360(G).

Funding

Department of Science and Technology, Ministry of Science and Technology, Government of India, DST/INSPIRE Fellowship/2019/IF190897, Maseed Uddin, SP/YO/2019/1360(G), Ramani K.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramani Kandasamy.

Ethics declarations

Conflict of interest

The authors declare that they have no competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 43 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uddin, M., Sriram, S.S., Krishna, K. et al. A novel integrated microbial and laccase-anchored carbon catalyst system for the effective treatment of toxic organic and recalcitrant-rich municipal landfill leachate. Carbon Lett. (2024). https://doi.org/10.1007/s42823-024-00706-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42823-024-00706-4

Keywords

Navigation