Skip to main content
Log in

Hierarchically porous polyaromatic carbon spheres decorated NiMn2O4 nanocomposite: efficient selective azo dye degradation from aqueous water and reduction of p-nitrophenol to p-aminophenol

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

We have intended and preparation of hierarchically absorbent materials were covered with a NiMn2O4 and acts as a catalyst for azo dye degradation. The polyaromatic-based (PA) absorbent compounds were initially constructed by bromomethylated aromatic hydrocarbons which undergo self-polymerization in presence of ZnBr as a reagent and cross linker is bromomethyl methyl ether. The absorbent black materials with a 3D network were prepared by direct carbonization and activation of the as-prepared PA. The hydrothermal method was adapted for the preparation of carbon hybrid material C@NiMn2O4 powder's catalytic activity is effective in reducing p-nitrophenol to p-aminophenol and decolorizing carbon-based dyes like methyl orange (MO), methyl yellow (MY), and Congo red (CR) in aqueous media at 25 °C when NaBH4 is added. UV–visible spectroscopy was used to analyze the dyes' breakdown at regular interval.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All pertinent data generated or analyzed during this investigation and presented in the published article.

References

  1. Aizenberg J, Weaver JC, Thanawala MS, Sundar VC, Morse DE, Fatzl P (2005) Skeleton of Euplectella sp.: structural hierarchy from the nanoscale to the macroscale. Science 309:275–278. https://doi.org/10.1126/science.1112255

    Article  CAS  PubMed  Google Scholar 

  2. Zou C, Wu DC, Li MZ, Zeng QC, Xu F, Huang ZY, Fu RW (2010) Template-free fabrication of hierarchical porous carbon by constructing carbonyl crosslinking bridges between polystyrene chains. J Mater Chem 20:731–735. https://doi.org/10.1039/B917960G

    Article  CAS  Google Scholar 

  3. Ji QM, Yoon SB, Hill JP, Vinu A, Yu JS, Ariga K (2009) Layer-by-layer films of dual-pore carbon capsules with designable selectivity of gas adsorption. J Am Chem Soc 131:4220–4221. https://doi.org/10.1021/ja9010354

    Article  CAS  PubMed  Google Scholar 

  4. Yu JG, Su YR, Cheng B (2007) Template-free fabrication and enhanced photocatalytic activity of hierarchical macro-/mesoporous titania. Adv Funct Mater 17:1984–1990. https://doi.org/10.1002/adfm.200600933

    Article  CAS  Google Scholar 

  5. Wang DW, Li F, Liu M, Lu GQ, Cheng HM (2008) 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage. Angew Chem Int Ed 47:373–376. https://doi.org/10.1002/anie.200702721

    Article  Google Scholar 

  6. Valkama S, Nykanen A, Kosonen H, Ramani R, Tuomisto F, Engelhardt P, Brinke GT, Ikkala O, Ruokolainen J (2007) Hierarchical porosity in self-assembled polymers: post-modification of block copolymer-phenolic resin complexes by pyrolysis allows the control of micro- and mesoporosity. Adv Funct Mater 17:183–190. https://doi.org/10.1002/adfm.200600604

    Article  CAS  Google Scholar 

  7. Huang X, Kim S, Heo MS, Kim JE, Suh H, Il K (2013) Easy synthesis of hierarchical carbon spheres with superior capacitive performance in super capacitors. Langmuir 29:12266–12274. https://doi.org/10.1021/la402696

    Article  CAS  PubMed  Google Scholar 

  8. Kalla RMN, Varyambath A, Kim MR, Kim I (2017) Amine-functionalized hyper-crosslinked polyphenanthrene as a metal-free catalyst for the synthesis of 2-amino-tetrahydro-4H-chromene and pyran derivatives. Appl Catal A 538:9–18. https://doi.org/10.1016/j.apcata.2017.03.009

    Article  CAS  Google Scholar 

  9. Huang X, Kim MR, Suh H, Il K (2016) Hierarchically nanostructured carbon-supported manganese oxide for high-performance pseudo-capacitors. Korean J Chem Eng 33:2228–2234. https://doi.org/10.1007/s11814-016-0036-3

    Article  CAS  Google Scholar 

  10. Peng Y, Chen Z, Wen J, Xiao Q, Weng D, He S, Geng H, Lu Y (2011) Hierarchical manganese oxide/carbon nanocomposites for supercapacitor electrodes. Nano Res 4:216–225. https://doi.org/10.1007/s12274-010-0072-y

    Article  CAS  Google Scholar 

  11. Gupta VK, Jain R, Mittal A, Saleh TA, Nayak A, Agarwal S, Sikarwar S (2012) Photo-catalytic degradation of toxic dye amaranth on TiO2/UV in aqueous suspensions. Mater Sci Eng C 32:12–17. https://doi.org/10.1016/j.msec.2011.08.018

    Article  CAS  Google Scholar 

  12. Mathur N, Bathnagar P, Nagar P, Bijiarnia MK (2005) Mutagenicity assessment of effluents from textile/dye industries of Sanganer, Jaipur (India): a case study. Ecotoxicol Environ Saf 61:105–103. https://doi.org/10.1016/j.ecoenv.2004.08.003

    Article  CAS  PubMed  Google Scholar 

  13. De Roos AJ, Ray RM, Gao DL, Wernli KJ, Fitzgibbons ED, Zinding F, Astrakianakis G, Thoma DB, Checkoway H (2005) Colorectal cancer incidence among female textile workers in Shanghai, China: a case-cohort analysis of occupational exposures. Cancer Causes Control 16:1117–1188. https://doi.org/10.1007/s10552-005-0398-z

    Article  Google Scholar 

  14. Dogan EE, Yesilada E, Ozata L, Yologlu S (2005) Genotoxicity testing of four textile dyes in two crosses of Drosophila using wing somatic mutation and recombination test. Drug Chem Toxicol 28:289–301. https://doi.org/10.1081/dct-200064473

    Article  CAS  PubMed  Google Scholar 

  15. Ying TY, Yang KL, Yiacoumi S, Tsouris C (2002) Electrosorption of ions from aqueous solutions by nanostructured carbon aerogel. J Colloid Interface Sci 250:18–27. https://doi.org/10.1006/jcis.2002.8314

    Article  CAS  PubMed  Google Scholar 

  16. Chiron S, Fernandez-Alba A, Rodriguez A, Calvo EC (2000) Pesticide chemical oxidation: state-of-the-art. Water Res 34:366–377. https://doi.org/10.1016/S0043-1354(99)00173-6

    Article  CAS  Google Scholar 

  17. Konstantinou IK, Albanis TA (2004) TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations a review. Appl Catal B Environ 49:1–14. https://doi.org/10.1016/j.apcatb.2003.11.010

    Article  CAS  Google Scholar 

  18. Burrows HD, Canle M, Santaballa JA, Steenken S (2002) Reaction pathways and mechanisms of photodegradation of pesticides. J Photochem Photobiol B Biol 67:71–108. https://doi.org/10.1016/S1011-1344(02)00277-4

    Article  CAS  Google Scholar 

  19. Sen K, Maity K, Islam SS (2013) Green synthesis of gold nanoparticles using a glucan of an edible mushroom and study of catalytic activity. Carbohydr Polym 91:518–528. https://doi.org/10.1016/j.carbpol.2012.08.058

    Article  CAS  PubMed  Google Scholar 

  20. Dasog M, Hou W, Scott RWJ (2011) Controlled growth and catalytic activity of gold monolayer protected clusters in presence of borohydride salts. Chem Commun 47:8569–8571. https://doi.org/10.1039/C1CC11813G

    Article  CAS  Google Scholar 

  21. Jana NR, Sau TK, Pal T (1999) Growing small silver particle as redox catalyst. J Phys Chem B 103:115–121. https://doi.org/10.1021/jp982731f

    Article  CAS  Google Scholar 

  22. Sinha AK, Basu M, Sarkar S, Pradhan M, Pal T (2013) Synthesis of gold nanochains via photoactivation technique and their catalytic applications. J Colloid Interface Sci 398:13–21. https://doi.org/10.1016/j.jcis.2013.01.061

    Article  CAS  PubMed  Google Scholar 

  23. Kalla RMN, Kim MR, Kim I (2018) Sulfonic acid-functionalized, hyper-cross-linked porous polyphenols as recyclable solid acid catalysts for esterification and transesterification reactions. Ind Eng Chem Res 57:11583–11591. https://doi.org/10.1021/acs.iecr.8b02418

    Article  CAS  Google Scholar 

  24. Liao Q, Kim EJ, Tang Y, Xu H, Yu D-G, Song W, Kim BJ (2023) Rational design of hyper-crosslinked polymers for biomedical applications. J Polym Sci. https://doi.org/10.1002/pol.20230270

    Article  Google Scholar 

  25. Song W, Zhang M, Huang X, Chen B, Ding Y, Zhang Y, Yu DG, Kim I (2022) Smart l-borneol-loaded hierarchical hollow polymer nanospheres with antipollution and antibacterial capabilities. Mater Today Chem 26:101252. https://doi.org/10.1016/j.mtchem.2022.101252

    Article  CAS  Google Scholar 

  26. Song W, Zhang Y, Yu D-G, Tran CH, Wang M, Varyambath A, Kim J, Kim I (2020) Efficient synthesis of folate-conjugated hollow polymeric capsules for accurate drug delivery to cancer cells. Biomacromol 22:732–742. https://doi.org/10.1021/acs.biomac.0c01520

    Article  CAS  Google Scholar 

  27. Kim MR, Kalla RMN, Kim S, Kim MR, Il K (2017) NiMn2O4 nano-sheet decorated hierarchically porous polyaromatic carbon spheres for high-performance supercapacitors. Chem Electro Chem 4:1214–1221. https://doi.org/10.1002/celc.201700023

    Article  CAS  Google Scholar 

  28. Lim C, Kwak CH, Jeong SG, Kim D, Lee Y-S (2023) Enhanced CO2 adsorption of activated carbon with simultaneous surface etching and functionalization by nitrogen plasma treatment. Carbon Lett 33(1):139–145. https://doi.org/10.1007/s42823-022-00410-1

    Article  Google Scholar 

  29. Zhang Y, Huang J, Dong Z (2023) Pd–Fe bimetallic nanoparticles anchored on N-doped carbon-modified graphene for efficient catalytic organic reactions. Carbon Lett 33:77–87. https://doi.org/10.1007/s42823-022-00404-z

    Article  Google Scholar 

  30. Thillaikkarasi D, Karthikeyan S, Ramesh R (2022) Electrochemical performance of various activated carbon-multi-walled carbon nanotubes symmetric supercapacitor electrodes in aqueous electrolytes. Carbon Lett 32:1481–1505. https://doi.org/10.1007/s42823-022-00386-y

    Article  Google Scholar 

  31. Gou G, Wei W, Yang J (2022) Effect of anion species on preparation and properties of pitch-based activated carbon fibers by in-situ catalytic activation of metal nanoparticles. Carbon Lett 32:1507–1518. https://doi.org/10.1007/s42823-022-00375-1

    Article  Google Scholar 

  32. Vilian AE, Choe SR, Giribabu K, Jang SC, Roh C, Huh YS, Han YK (2017) Pd nanospheres decorated reduced graphene oxide with multi-functions: highly efficient catalytic reduction and ultrasensitive sensing of hazardous 4-nitrophenol pollutant. J Hazard Mater 333:54–62. https://doi.org/10.1016/j.jhazmat.2017.03.015

    Article  CAS  PubMed  Google Scholar 

  33. Vilian AE, Ranjith KS, Hwang SK, Bhaskaran G, Alhammadi M, Park SY, Huh YS, Han YK (2022) Interface engineering of MoS2 nanopetal grown on carbon nanofibers for the electrocatalytic sensing of mercury (II) and efficient hydrogen evolution. Mater Today Nano 20:100262

    Article  Google Scholar 

  34. Al Yahyai WAS, Al Isai AAS, Alotibi MF, Bhagavanth Reddy G, Al-Abri M, Babu P, Nagaraju D, Siva Kumar N, Al-Fatesh AS, Osman AI, Kondaiah S (2023) Green synthesis of Mesona Blumes gum capped silver nanoparticles and their antioxidant, antibacterial and catalytic studies. Mater Adv 4:5273. https://doi.org/10.1039/D3MA00091E

    Article  Google Scholar 

  35. Wang C, Yang F, Yang W, Ren L, Zhang Y, Jia X, Zhang L, Li Y (2015) PdO nanoparticles enhancing the catalytic activity of Pd/carbon nano-tubes for 4-nitrophenol reduction. RSC Adv 5:27526–27532. https://doi.org/10.1039/C4RA16792A

    Article  CAS  Google Scholar 

  36. Amritha VK, Badhulika S (2023) A visible light-driven NaTiO3/g-C3N4 heterojunction photocatalyst for ultra-fast organic dye degradation. New J Chem 47:17897–17907. https://doi.org/10.1039/D3NJ02907G

    Article  Google Scholar 

  37. Gul T, Khan I, Ahmad B, Ahmad S, Alsaiari AA, Almehmadi M, Abdulaziz O, Alsharif A, Khan I, Saeed K (2023) Efficient photodegradation of methyl red dye by kaolin clay supported zinc oxide nanoparticles with their antibacterial and antioxidant activities. Heliyon 9:e16738. https://doi.org/10.1016/j.heliyon.2023.e16738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Harikaran D, Vijayaraghavan R (2023) Strontium peroxide as a potential photocatalyst: rapid degradation of organic and pharmaceutical pollutants. New J Chem 47:20733–20743. https://doi.org/10.1039/D3NJ03546H

    Article  CAS  Google Scholar 

  39. Huang L, He M, Chen B, Cheng Q, Hu B (2017) Facile green synthesis of magnetic porous organic polymers for rapid removal and separation of methylene blue. ACS Sustainable Chem Eng 5:4050–4055. https://doi.org/10.1021/acssuschemeng.7b00031

    Article  CAS  Google Scholar 

  40. Farhadi S, Siadatnasab F, Khataee A (2017) Ultrasound-assisted degradation of organic dyes over magnetic CoFe2O4@ZnS core-shell nanocomposite. Ultrason Sonochem 37:298–309. https://doi.org/10.1016/j.ultsonch.2017.01.019

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by Yeungnam University grant 2023.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sivarama Krishna Lakkaboyana, Seong-Cheol Kim or Il Kim.

Ethics declarations

Confilict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalla, R.M.N., Kaliraja, T., Lakkaboyana, S.K. et al. Hierarchically porous polyaromatic carbon spheres decorated NiMn2O4 nanocomposite: efficient selective azo dye degradation from aqueous water and reduction of p-nitrophenol to p-aminophenol. Carbon Lett. 34, 1229–1237 (2024). https://doi.org/10.1007/s42823-023-00685-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-023-00685-y

Keywords

Navigation