Skip to main content
Log in

Influence of carbon fibers on interfacial bonding properties of copper-coated carbon fibers

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

Copper-coated carbon fibers have excellent conductivity and mechanical properties, making them a promising new light-weight functional material. One of the main challenges to their development is the poor affinity between carbon fiber and metals. This paper selects different carbon fibers for copper electroplating experiments to study the effect of carbon fiber properties on the interface bonding performance between the copper plating layer and carbon fibers. It has been found that the interfacial bonding performance between copper and carbon fiber is related to the degree of graphitization of carbon fiber. The lower the degree of graphitization of carbon fiber, the smaller the proportion of carbon atoms with sp2 hybrid structure in carbon fiber, the stronger the interfacial bonding ability between carbon fiber and copper coating. Therefore, carbon fiber with lower graphitization degree is conducive to reducing the falling off rate of copper coating and improving the quality of copper coating, and the conductivity of copper-plated carbon fibers increases with the decrease of graphitization degree of carbon fibers. The conductivity of copper-plated carbon fibers increases by more than six times when the graphitization degree of carbon fibers decreases by 23.9%. This work provides some benchmark importance for the preparation of high-quality copper-plated carbon fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Ikbal H, Wang Q, Azzam A, Li W (2016) GF/CF hybrid laminates made through intra-tow hybridization for automobile applications. Fibers Polym 17(9):1505–1521. https://doi.org/10.1007/s12221-016-5953-6

    Article  CAS  Google Scholar 

  2. Picher-Martel G-P, Levy A, Hubert P (2016) Compression moulding of Carbon/PEEK randomly-oriented strands composites: A 2D finite element model to predict the squeeze flow behaviour. Compos Part A Appl Sci Manuf 81:69–77. https://doi.org/10.1016/j.compositesa.2015.11.006

    Article  CAS  Google Scholar 

  3. Smith S (2003) Racquets to racecars: the use of carbon fibers in sports and recreation. Abstr Pap Am Chem Soc 225:U583–U583

    Google Scholar 

  4. Swaminathan G, Shivakumar KN, Sharpe M (2006) Material property characterization of glass and carbon/vinyl ester composites. Compos Sci Technol 66(10):1399–1408. https://doi.org/10.1016/j.compscitech.2005.09.008

    Article  CAS  Google Scholar 

  5. Yu J (2021) Nanomaterials and repair of basketball sports ligament injury. Ferroelectrics 579(1):91–103. https://doi.org/10.1080/00150193.2021.1903271

    Article  CAS  Google Scholar 

  6. Fan Y, Yang H, Zhu H, Liu X, Li M, Qu Y, Yang N, Zou G (2007) Metallization of carbon fibers with nickel by electroless plating technique. Metall Mater Trans A 38(9):2148–2152. https://doi.org/10.1007/s11661-007-9278-3

    Article  CAS  Google Scholar 

  7. Wang R, He F, Wan Y, Qi Y (2012) Preparation and characterization of a kind of magnetic carbon fibers used as electromagnetic shielding materials. J Alloys Compd 514:35–39. https://doi.org/10.1016/j.jallcom.2011.10.061

    Article  CAS  Google Scholar 

  8. Wang R, Wan Y, He F, Qi Y, You W, Luo H (2012) The synthesis of a new kind of magnetic coating on carbon fibers by electrodeposition. Appl Surf Sci 258(7):3007–3011. https://doi.org/10.1016/j.apsusc.2011.11.027

    Article  CAS  Google Scholar 

  9. Han Z, Zhang X, Yuan H, Li Z, Li G, Zhang H, Tan Y (2022) Graphene oxide/gold nanoparticle/graphite fiber microelectrodes for directing electron transfer of glucose oxidase and glucose detection. J Power Sources. https://doi.org/10.1016/j.jpowsour.2021.230956

    Article  Google Scholar 

  10. Varentsova VI, Varenstov VK, Bataev IA, Yusin SI (2011) Effect of surface state of carbon fiber electrode on copper electroplating from sulfate solutions. Prot Met Phys Chem Surf 47(1):43–47. https://doi.org/10.1134/s2070205111010217

    Article  CAS  Google Scholar 

  11. Nelyub VA (2018) Technologies of metallization of carbon fabric and the properties of the related carbon fiber reinforced plastics. Russ Metall 13:1199–1201. https://doi.org/10.1134/s0036029518130189

    Article  Google Scholar 

  12. Kozera R, Bucki JJ, Salacinska A, Bielinski J, Boczkowska A (2015) Quantitative image analysis of Ni-P coatings deposited on carbon fibers. J Mater Eng Perform 24(9):3400–3406. https://doi.org/10.1007/s11665-015-1624-9

    Article  CAS  Google Scholar 

  13. Che D, Yao G, Cao Z (2012) A precious metal-free electroless technique for the deposition of copper on carbon fibers. Metall Mater Trans A-Phys Metall Mater Sci 43A(11):4194–4199. https://doi.org/10.1007/s11661-011-0965-8

    Article  CAS  Google Scholar 

  14. Hua Z, Liu Y, Yao G, Wang L, Ma J, Liang L (2012) Preparation and characterization of nickel-coated carbon fibers by electroplating. J Mater Eng Perform 21(3):324–330. https://doi.org/10.1007/s11665-011-9958-4

    Article  CAS  Google Scholar 

  15. Allman A, Whiteside J, Jewell E, Griffiths C, McMurray N, de Vooys A (2020) Surface modification of Cr (III) packaging substrates for enhanced adhesion via citric acid processing. Surf Interfaces. https://doi.org/10.1016/j.surfin.2020.100545

    Article  Google Scholar 

  16. Mehrabani SAN, Ahmadzadeh R, Abdian N, Tabrizi AT, Aghajani H (2020) Synthesis of Ni-GO nanocomposite coatings: corrosion evaluation. Surf Interfaces. https://doi.org/10.1016/j.surfin.2020.100546

    Article  Google Scholar 

  17. Xue D, Van Ooij WJ (2013) Corrosion performance improvement of hot-dipped galvanized (HDG) steels by electro-deposition of epoxy-resin-ester modified bis- tri-ethoxy-silyl ethane (BTSE) coatings. Prog Org Coat 76(7–8):1095–1102. https://doi.org/10.1016/j.porgcoat.2013.03.004

    Article  CAS  Google Scholar 

  18. Xi F, Liu H, Li W, Zhu L, Geng H, Quan L, Liang W (2015) Fabricating CuS counter electrode for quantum dots-sensitized solar cells via electro-deposition and sulfurization of Cu<sub>2</sub>O. Electrochim Acta 178:329–335. https://doi.org/10.1016/j.electacta.2015.08.020

    Article  CAS  Google Scholar 

  19. Chu H, Liang Y, Guo M-Z, Zhu Z, Zhao S, Song Z, Wang L, Jiang L (2020) Effect of electro-deposition on repair of cracks in reinforced concrete. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2019.117725

    Article  Google Scholar 

  20. Wang T, Zhao R, Zhan K, Bao L, Zhang Y, Yang Z, Yan Y, Zhao B, Yang J (2021) Preparation of electro-reduced graphene oxide/copper composite foils with simultaneously enhanced thermal and mechanical properties by DC electro-deposition method. Mater Sci Eng A-Struct. https://doi.org/10.1016/j.msea.2020.140574

    Article  Google Scholar 

  21. Kale MB, Borse RA, Mohamed AGA, Wang Y (2021) Electrocatalysts by electrodeposition: recent advances, synthesis methods, and applications in energy conversion. Adv Funct Mater. https://doi.org/10.1002/adfm.202101313

    Article  Google Scholar 

  22. Kim K-W, Han W, Kim B-S, Kim B-J, An K-H (2017) A study on EMI shielding enhancement behaviors of Ni-plated CFs-reinforced polymer matrix composites by post heat treatment. Appl Surf Sci 415:55–60. https://doi.org/10.1016/j.apsusc.2017.01.108

    Article  CAS  Google Scholar 

  23. Lysenko AA, Medvedeva NG, Gorberg BL, Kuzikova IL, Astashkina OV, Uvarova NF (2021) Silver-containing carbon fibers, preparation and properties. Fibre Chem 52(5):324–329. https://doi.org/10.1007/s10692-021-10206-0

    Article  CAS  Google Scholar 

  24. Su X, Qiang C (2012) Electroless plating and magnetic properties of Co-Zn-P coating on short carbon fibres. Bull Mater Sci 35(7):1093–1097. https://doi.org/10.1007/s12034-012-0408-1

    Article  CAS  Google Scholar 

  25. Yu P, Botte GG (2015) Bimetallic platinum-iron electrocatalyst supported on carbon fibers for coal electrolysis. J Power Sources 274:165–169. https://doi.org/10.1016/j.jpowsour.2014.10.054

    Article  CAS  Google Scholar 

  26. Yi H, Kim JY, Gul HZ, Kang S, Kim G, Sim E, Ji H, Kim J, Choi YC, Kim WS, Lim SC (2020) Wiedemann-Franz law of Cu-coated carbon fiber. Carbon 162:339–345. https://doi.org/10.1016/j.carbon.2020.02.062

    Article  CAS  Google Scholar 

  27. Xu F, Cui Y, Bao D, Lin D, Yuan S, Wang X, Wang H, Sun Y (2020) A 3D interconnected Cu network supported by carbon felt skeleton for highly thermally conductive epoxy composites. Chem Eng J. https://doi.org/10.1016/j.cej.2020.124287

    Article  PubMed  PubMed Central  Google Scholar 

  28. Moisala A, Li Q, Kinloch IA, Windle AH (2006) Thermal and electrical conductivity of single- and multi-walled carbon nanotube-epoxy composites. Compos Sci Technol 66(10):1285–1288. https://doi.org/10.1016/j.compscitech.2005.10.016

    Article  CAS  Google Scholar 

  29. Daoush WM, Albogmy TS, Khamis MA, Inam F (2020) Syntheses and step-by-step morphological analysis of nano-copper-decorated carbon long fibers for aerospace structural applications. Crytals. https://doi.org/10.3390/cryst10121090

    Article  Google Scholar 

  30. Subramaniam C, Yamada T, Kobashi K, Sekiguchi A, Futaba DN, Yumura M, Hata K (2013) One hundred fold increase in current carrying capacity in a carbon nanotube-copper composite. Nat Commun. https://doi.org/10.1038/ncomms3202

    Article  PubMed  Google Scholar 

  31. Tran TQ, Lee JKY, Chinnappan A, Loc NH, Tran LT, Ji D, Jayathilaka WADM, Kumar VV, Ramakrishna S (2020) High-performance carbon fiber/gold/copper composite wires for lightweight electrical cables. J Mater Sci Technol 42:46–53. https://doi.org/10.1016/j.jmst.2019.08.057

    Article  CAS  Google Scholar 

  32. Zhang GD, Yu JW, Su C, Di CR, Ci SZ, Mou YM, Fu YG, Qiao K (2023) The effect of annealing on the properties of copper-coated carbon fiber. Surf Interfaces. https://doi.org/10.1016/j.surfin.2023.102630

    Article  Google Scholar 

  33. Serp P, Figueiredo JL, Bertrand P, Issi JP (1998) Surface treatments of vapor-grown carbon fibers produced on a substrate. Carbon 36(12):1791–1799. https://doi.org/10.1016/s0008-6223(98)00149-3

    Article  CAS  Google Scholar 

  34. Su FH, Zhang ZZ, Wang K, Jiang W, Liu WM (2005) Tribological and mechanical properties of the composites made of carbon fabrics modified with various methods. Compos Pt A-Appl Sci Manuf 36(12):1601–1607. https://doi.org/10.1016/j.compositesa.2005.04.012

    Article  CAS  Google Scholar 

  35. Chen H, Zhou J, Zhao L, Sui Z, Zhou X (2010) Effect of gaseous oxidation on the properties of carbon nanofibers and Ru/CNFs for sorbitol hydrogenolysis. Chem React Eng Technol 26(1):24–29

    CAS  Google Scholar 

  36. Lee H, Dellatore SM, Miller WM, Messersmith PB (2007) Mussel-inspired surface chemistry for multifunctional coatings. Science 318(5849):426–430. https://doi.org/10.1126/science.1147241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zeng Q (1997) Fabrication of TiO2 coated Cf/Al by using sol-gel technique. Acta Metall Sin 33(9):1002–1008

    CAS  Google Scholar 

  38. Wu ZH, Pittman CU, Gardner SD (1995) Nitric-acid oxidation of carbon fiber and the effects of subsequent treatment in refluxing aqueous naoh. Carbon 33(5):597–605. https://doi.org/10.1016/0008-6223(95)00145-4

    Article  CAS  Google Scholar 

  39. Li G, Chen B, Liu J (2017) Research progress of surface modification technology of carbon fiber. New Chem Mater 45(7):39–41

    Google Scholar 

  40. Li H, Liebscher M, Zhao D, Yin B, Du Y, Yang J, Kaliske M, Mechtcherine V (2023) A review of carbon fiber surface modification methods for tailor-made bond behavior with cementitious matrices. Prog Mater Sci. https://doi.org/10.1016/j.pmatsci.2022.101040

    Article  Google Scholar 

  41. Ruan K, Guo Y, Tang Y, Zhang Y, Zhang J, He M, Kong J, Gu J (2018) Improved thermal conductivities in polystyrene nanocomposites by incorporating thermal reduced graphene oxide via electrospinning-hot press technique. Compos Commun 10:68–72. https://doi.org/10.1016/j.coco.2018.07.003

    Article  Google Scholar 

  42. Liu S, Zhao B, Jiang L, Zhu Y-W, Fu X-Z, Sun R, Xu J-B, Wong C-P (2018) Core-shell Cu@rGO hybrids filled in epoxy composites with high thermal conduction. J Mater Chem C 6(2):257–265. https://doi.org/10.1039/c7tc04427e

    Article  CAS  Google Scholar 

  43. Yao X, Gao X, Jiang J, Xu C, Deng C, Wang J (2018) Comparison of carbon nanotubes and graphene oxide coated carbon fiber for improving the interfacial properties of carbon fiber/epoxy composites. Compos Pt B-Eng 132:170–177. https://doi.org/10.1016/j.compositesb.2017.09.012

    Article  CAS  Google Scholar 

  44. Yang S, Li W, Bai S, Wang Q (2019) Fabrication of Morphologically Controlled Composites with High Thermal Conductivity and Dielectric Performance from Aluminum Nanoflake and Recycled Plastic Package. ACS Appl Mater Interfaces 11(3):3388–3399. https://doi.org/10.1021/acsami.8b16209

    Article  CAS  PubMed  Google Scholar 

  45. Song B, Liu Z, Wang L, Dong B, Pan D, Huang Y, Hu Q, Guo Z (2020) Significantly strengthening epoxy by incorporating carbon nanotubes/graphitic carbon nitride hybrid nanofillers. Macromol Mater Eng. https://doi.org/10.1002/mame.202000231

    Article  Google Scholar 

  46. Zan HAN, Xuejun Z, Yanhong T, Yanfeng Y, Zengmin S (2011) Effect of graphitization temperature on microstructure of PAN-based high modulus graphite fibers. Chem Ind Eng Prog 30(8):1805–1808

    Google Scholar 

  47. Chang SC, Shieh JM, Dai BT, Feng MS (2002) Reduction of resistivity of electroplated copper by rapid thermal annealing. Electrochem Solid-State Lett 5(6):C67–C70. https://doi.org/10.1149/1.1477296

    Article  CAS  Google Scholar 

  48. Stangl M, Acker J, Oswald S, Uhlemann M, Gemming T, Baunack S, Wetzig K (2007) Incorporation of sulfur, chlorine, and carbon into electroplated Cu thin films. Microelectron Eng 84(1):54–59. https://doi.org/10.1016/j.mee.2006.08.004

    Article  CAS  Google Scholar 

  49. Strehle S, Bartha JW, Wetzig K (2009) Electrical properties of electroplated Cu(Ag) thin films. Thin Solid Films 517(11):3320–3325. https://doi.org/10.1016/j.tsf.2008.11.146

    Article  CAS  Google Scholar 

  50. Seah C, Mridha S, Chan L (1999) Annealing of copper electrodeposits. J Vac Sci Technol A-Vac Surf Films 17(4):1963–1967. https://doi.org/10.1116/1.581711

    Article  CAS  Google Scholar 

  51. Tzeng SS, Chang FY (2001) Electrical resistivity of electroless nickel coated carbon fibers. Thin Solid Films 388(1–2):143–149. https://doi.org/10.1016/s0040-6090(01)00809-4

    Article  CAS  Google Scholar 

  52. Zhang Y, Franklin NW, Chen RJ, Dai HJ (2000) Metal coating on suspended carbon nanotubes and its implication to metal-tube interaction. Chem Phys Lett 331(1):35–41. https://doi.org/10.1016/s0009-2614(00)01162-3

    Article  CAS  Google Scholar 

  53. Lim SC, Jang JH, Bae DJ, Han GH, Lee S, Yeo I-S, Lee YH (2009) Contact resistance between metal and carbon nanotube interconnects: effect of work function and wettability. Appl Phys Lett. https://doi.org/10.1063/1.3255016

    Article  Google Scholar 

  54. Zou J, Liu D, Zhao J, Hou L, Liu T, Zhang X, Zhao Y, Zhu YT, Li Q (2018) Ni nanobuffer layer provides light-weight CNT/Cu fibers with superior robustness, conductivity, and ampacity. ACS Appl Mater Interfaces 10(9):8197–8204. https://doi.org/10.1021/acsami.7b19012

    Article  CAS  PubMed  Google Scholar 

  55. Daneshvar F, Chen H, Zhang T, Sue HJ (2020) Fabrication of light-weight and highly conductive copper-carbon nanotube core-shell fibers through interface design. Adv Mater Interfaces 7(19):2000779. https://doi.org/10.1002/admi.202000779

    Article  CAS  Google Scholar 

  56. Feldman B, Park S, Haverty M, Shankar S, Dunham ST (2010) Simulation of grain boundary effects on electronic transport in metals, and detailed causes of scattering. Phys Status Solidi B-Basic Solid State Phys 247(7):1791–1796. https://doi.org/10.1002/pssb.201046133

    Article  CAS  Google Scholar 

  57. Rickman J, Barmak K (2013) Simulation of electrical conduction in thin polycrystalline metallic films: Impact of microstructure. J Appl Phys 114(13):133703. https://doi.org/10.1063/1.4823985

    Article  CAS  Google Scholar 

  58. Wang M, Zhang B, Zhang G, Yu Q, Liu C (2009) Effects of interface and grain boundary on the electrical resistivity of Cu/Ta multilayers. J Mater Sci Technol 25(5):699

    CAS  Google Scholar 

  59. Schrank C, Schwarz B, Eisenmenger-Sittrier C, Mayerhofer K, Neubauer E (2005) Influence of thermal treatment on the adhesion of copper coatings on carbon substrates. Vacuum 80(1–3):122–127. https://doi.org/10.1016/j.vacuum.2005.07.031

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun Qiao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 31527 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, G., Yang, W., Ding, J. et al. Influence of carbon fibers on interfacial bonding properties of copper-coated carbon fibers. Carbon Lett. 34, 1055–1064 (2024). https://doi.org/10.1007/s42823-023-00671-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-023-00671-4

Keywords

Navigation