Skip to main content
Log in

Ultrasensitive monitoring of Idarubicin in environmental and biological fluids using amplification of electrochemical sensor with NiOSWCNTs/CNT nanocomposites and 1-ethyl-3-methylimidazolium chloride conductive catalysts

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

Determination of Idarubicin (IDA) as an anthracycline derivative and extensively used treatment of leukemia was investigated by electrochemical method using carbon paste electrode (CPE) modified with NiO/SWCNTs nanocomposite and 1-ethyl-3-methylimidazolium chloride (EMCl). The NiO/SWCNTs nanocomposites and EMCl play an important catalytic role in improving the electron transfer process at surface of CPE to monitoring of IDA. Electrochemical method was used to investigation redox behavior of IDA at surface of the NiO/SWCNTs/EMCl/CPE. The oxidation signal of IDA amplified by modification of CPE by NiO/SWCNTs and EMCl was about 4.3 times and NiO/SWCNTs/EMCl/CPE detected IDA in concentration range of 0.001–160 µM with detection limit of 0.5 nM, respectively. The evaluation of analytical and recovery data confirms the mentioned method was completely validated and successfully employed for the determination of IDA in real samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ertas N, Kara HES (2015) l-Cysteine capped Mn-doped ZnS quantum dots as a room temperature phosphorescence sensor for in-vitro binding assay of idarubicin and DNA. Biosens Bioelectron 70:345–350

    Article  CAS  PubMed  Google Scholar 

  2. Kara HES (2014) Redox mechanism of anticancer drug idarubicin and in-situ evaluation of interaction with DNA using an electrochemical biosensor. Bioelectrochemistry 99:17–23

    Article  Google Scholar 

  3. Zahraei Z, Rabbani-Chadegani A (2007) A comparison of the effect of anticancer drugs, idarubicin and adriamycin, on soluble chromatin. Eur J Pharmacol 575(1–3):28–33

    Article  CAS  PubMed  Google Scholar 

  4. Badea I, Lazăr L, Moja D, Nicolescu D, Tudose A (2005) A HPLC method for the simultaneous determination of seven anthracyclines. J Pharm Biomed Anal 39(1–2):305–309

    Article  CAS  PubMed  Google Scholar 

  5. Maliszewska O, Treder N, Olędzka I, Kowalski P, Miękus N, Bączek T et al (2020) Sensitive analysis of idarubicin in human urine and plasma by liquid chromatography with fluorescence detection: an application in drug monitoring. Molecules 25(24):5799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lachatre F, Marquet P, Ragot S, Gaulier J, Cardot P, Dupuy J (2000) Simultaneous determination of four anthracyclines and three metabolites in human serum by liquid chromatography–electrospray mass spectrometry. J Chromatogr B Biomed Sci Appl 738(2):281–291

    Article  CAS  PubMed  Google Scholar 

  7. Eksborg S, Nilsson B (1989) Reversed-phase liquid chromatographic determination of idarubicin and its 13-hydroxy metabolite in human plasma. J Chromatogr B Biomed Sci Appl 488(2):427–434

    Article  CAS  Google Scholar 

  8. Hempel G, Haberland S, Schulze-Westhoff P, Möhling N, Blaschke G, Boos J (1997) Determination of idarubicin and idarubicinol in plasma by capillary electrophoresis. J Chromatogr B Biomed Sci Appl 698(1–2):287–292

    Article  CAS  PubMed  Google Scholar 

  9. Hu Q, Zhang L, Zhou T, Fang Y (2000) Determination of daunorubicin in human urine by capillary zone electrophoresis with amperometric detection. Anal Chim Acta 416(1):15–19

    Article  CAS  Google Scholar 

  10. Ozluer C, Kara HES (2014) In vitro DNA binding studies of anticancer drug idarubicin using spectroscopic techniques. J Photochem Photobiol, B 138:36–42

    Article  CAS  PubMed  Google Scholar 

  11. Kuhlmann O, Hofmann S, Weiss M (1999) Determination of idarubicin and idarubicinol in rat plasma using reversed-phase high-performance liquid chromatography and fluorescence detection. J Chromatogr B Biomed Sci Appl 728(2):279–282

    Article  CAS  PubMed  Google Scholar 

  12. Evtugyn G, Porfireva A, Stepanova V, Budnikov H (2015) Electrochemical biosensors based on native DNA and nanosized mediator for the detection of anthracycline preparations. Electroanalysis 27(3):629–637

    Article  CAS  Google Scholar 

  13. Matyszewska D (2020) The influence of charge and lipophilicity of daunorubicin and idarubicin on their penetration of model biological membranes–Langmuir monolayer and electrochemical studies. Biochimica et Biophysica Acta (BBA)-Biomembranes 1862(2):183104

    Article  CAS  PubMed  Google Scholar 

  14. Soleimani S, Arkan E, Farshadnia T, Mahnam Z, Jalili F, Goicoechea HC et al (2020) The first attempt on fabrication of a nano-biosensing platform and exploiting first-order advantage from impedimetric data: application to simultaneous biosensing of doxorubicin, daunorubicin and idarubicin. Sens Bio-Sens Res 29:100366

    Article  Google Scholar 

  15. Hussain RT, Islam AS, Khairuddean M, Suah FBM (2022) A polypyrrole/GO/ZnO nanocomposite modified pencil graphite electrode for the determination of andrographolide in aqueous samples. Alex Eng J 61(6):4209–4218

    Article  Google Scholar 

  16. Yogeeshwari R, Krishna RH, Adarakatti PS, Ashoka S (2022) Ultra-trace detection of toxic heavy metal ions using graphitic carbon functionalized Co3O4 modified screen-printed electrode. Carbon Letters 32(1):181–191

    Article  Google Scholar 

  17. Danial WH, Norhisham NA, Ahmad Noorden AF, Abdul Majid Z, Matsumura K, Iqbal A (2021) A short review on electrochemical exfoliation of graphene and graphene quantum dots. Carbon Lett 31(3):371–388

    Article  Google Scholar 

  18. Saghiri S, Ebrahimi M, Bozorgmehr MR (2021) Electrochemical amplified sensor with MgO nanoparticle and ionic liquid: a powerful strategy for methyldopa analysis. Chem Methodol 5(3):234–239

    CAS  Google Scholar 

  19. Vardini M, Abbasi N, Kaviani A, Ahmadi M, Karimi E (2022) Graphite electrode potentiometric sensor modified by surface imprinted silica gel to measure valproic acid. Chem Methodol 6(5):398–408

    CAS  Google Scholar 

  20. Mehdizadeh Z, Shahidi S, Ghorbani-HasanSaraei A, Limooei M, Bijad M (2022) Monitoring of amaranth in drinking samples using voltammetric amplified electroanalytical sensor. Chem Methodol 6:246–252

    CAS  Google Scholar 

  21. Karimi-Maleh H, Liu Y, Li Z, Darabi R, Orooji Y, Karaman C et al (2023) Calf thymus ds-DNA intercalation with pendimethalin herbicide at the surface of ZIF-8/Co/rGO/C3N4/ds-DNA/SPCE; a bio-sensing approach for pendimethalin quantification confirmed by molecular docking study. Chemosphere 332:138815

    Article  CAS  PubMed  Google Scholar 

  22. Ghalkhani M, Zare N, Karimi F, Karaman C, Alizadeh M, Vasseghian Y (2022) Recent advances in Ponceau dyes monitoring as food colorant substances by electrochemical sensors and developed procedures for their removal from real samples. Food Chem Toxicol 161:112830

    Article  CAS  PubMed  Google Scholar 

  23. Ermis N, Zare N, Darabi R, Alizadeh M, Karimi F, Singh J et al (2023) Recent advantage in electrochemical monitoring of gallic acid and kojic acid: a new perspective in food science. J Food Meas Charact 17:1–10

    Article  Google Scholar 

  24. Arkan E, Paimard G, Moradi K (2017) A novel electrochemical sensor based on electrospun TiO2 nanoparticles/carbon nanofibers for determination of idarubicin in biological samples. J Electroanal Chem 801:480–487

    Article  CAS  Google Scholar 

  25. Matyszewska D, Nazaruk E, Campbell RA (2021) Interactions of anticancer drugs doxorubicin and idarubicin with lipid monolayers: new insight into the composition, structure and morphology. J Colloid Interface Sci 581:403–416

    Article  CAS  PubMed  Google Scholar 

  26. Ensafi AA, Taei M, Khayamian T, Karimi-Maleh H, Hasanpour F (2010) Voltammetric measurement of trace amount of glutathione using multiwall carbon nanotubes as a sensor and chlorpromazine as a mediator. J Solid State Electrochem 14:1415–1423

    Article  CAS  Google Scholar 

  27. Akbarian Y, Shabani-Nooshabadi M, Karimi-Maleh H (2018) Fabrication of a new electrocatalytic sensor for determination of diclofenac, morphine and mefenamic acid using synergic effect of NiO-SWCNT and 2, 4-dimethyl-N/-[1-(2, 3-dihydroxy phenyl) methylidene] aniline. Sens Actuators, B Chem 273:228–233

    Article  CAS  Google Scholar 

  28. Dehdashtian S, Hashemi B, Aeenmehr A (2019) The application of perlite/cobalt oxide/reduced graphene oxide (PC-rGO)/metal organic framework (MOF) composite as electrode modifier for direct sensing of anticancer drug idarubicin. IEEE Sens J 19(24):11739–11745

    Article  CAS  Google Scholar 

  29. Kaya SI, Kurbanoglu S, Yavuz E, Demiroglu Mustafov S, Sen F, Ozkan SA (2020) Carbon-based ruthenium nanomaterial-based electroanalytical sensors for the detection of anticancer drug idarubicin. Sci Rep 10(1):11057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Du H, Ye J, Zhang J, Huang X, Yu C (2011) A voltammetric sensor based on graphene-modified electrode for simultaneous determination of catechol and hydroquinone. J Electroanal Chem 650(2):209–213

    Article  CAS  Google Scholar 

  31. Karimi-Maleh H, Darabi R, Baghayeri M, Karimi F, Fu L, Rouhi J et al (2023) Recent developments in carbon nanomaterials-based electrochemical sensors for methyl parathion detection. J Food Meas Charact 17:1–19

    Article  Google Scholar 

  32. Arjmandi J, Shahidi S-A, Ghorbani-HasanSaraei A, Limooei MB, Raeisi SN (2022) Sudan I monitoring as a hazardous azo dye using an electroanalytical tool amplified with NiO/SWCNTs-ionic liquid catalysts. Chemosphere 309:136673

    Article  CAS  PubMed  Google Scholar 

  33. Ariavand S, Ebrahimi M, Foladi E (2022) Design and construction of a novel and an efficient potentiometric sensor for determination of sodium ion in urban water samples. Chem Methodol 6(11):886–904

    CAS  Google Scholar 

  34. Sadeghi H, Shahidi S-A, Raeisi SN, Ghorbani-HasanSaraei A, Karimi F (2020) Electrochemical determination of vitamin B6 in water and juice samples using an electrochemical sensor amplified with NiO/CNTs and Ionic liquid. Int J Electrochem Sci 15(10):10488–10498

    Article  Google Scholar 

  35. Darabi R, Shabani-Nooshabadi M (2021) NiFe2O4-rGO/ionic liquid modified carbon paste electrode: an amplified electrochemical sensitive sensor for determination of sunset yellow in the presence of tartrazine and allura red. Food Chem 339:127841

    Article  CAS  PubMed  Google Scholar 

  36. Fujii K, Soejima Y, Kyoshoin Y, Fukuda S, Kanzaki R, Umebayashi Y et al (2008) Liquid structure of room-temperature ionic liquid, 1-ethyl-3-methylimidazolium bis-(trifluoromethanesulfonyl) imide. J Phys Chem B 112(14):4329–4336

    Article  CAS  PubMed  Google Scholar 

  37. Singh VV, Nigam AK, Batra A, Boopathi M, Singh B, Vijayaraghavan R (2012) Applications of ionic liquids in electrochemical sensors and biosensors. Int J Electrochem 2012:1–19

    Google Scholar 

  38. Mehmandoust M, Pourhakkak P, Tiris G, Karimi-Maleh H, Erk N (2022) A reusable and sensitive electrochemical sensor for determination of idarubicin in environmental and biological samples based on NiFe2O4 nanospheres anchored N-doped graphene quantum dots composite; an electrochemical and molecular docking investigation. Environ Res 212:113264

    Article  CAS  PubMed  Google Scholar 

  39. Foroughi MM, Jahani S (2022) Investigation of a high-sensitive electrochemical DNA biosensor for determination of Idarubicin and studies of DNA-binding properties. Microchem J 179:107546

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud Ebrahimi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mostofi, M., Ebrahimi, M. & Beyramabadi, S.A. Ultrasensitive monitoring of Idarubicin in environmental and biological fluids using amplification of electrochemical sensor with NiOSWCNTs/CNT nanocomposites and 1-ethyl-3-methylimidazolium chloride conductive catalysts. Carbon Lett. 34, 797–803 (2024). https://doi.org/10.1007/s42823-023-00610-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-023-00610-3

Keywords

Navigation