Skip to main content
Log in

Carbon nanotubes/graphitic carbon nitride nanocomposites for all-solid-state supercapacitors

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

All-solid-state supercapacitors with high power density and working stability are high-efficiency energy storage devices for smart electronic equipment. Developing electrode materials with fast ions and electrons transport is critical to improving the energy storage capability. Here, we report carbon nanotubes/graphitic carbon nitride nanocomposites with large specific surface area, porous structure and high electrical conductivity toward high-performance supercapacitors. The large surface area with porosity provides reservoir for ion accommodation during charge-discharge processes, and the high conductivity facilitates electrons and ions transport. Furthermore, nitrogen sites in electrodes contribute significant pseudocapacitance for supercapacitors. The nanocomposites based device gives a high specific capacity of 148 F g−1 at current density of 1 A g−1 with good rate capability from 1 to 10 A g−1. Additionally, the device displays excellent working stability with capacitance retention of 93% even after 10000 cycles at 1 A g−1 under 0.8 V in air. This study sheds light on design of nanocomposites with highly efficient charge transfer and will accelerate development of next-generation solid state energy devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang Y Z, Wang Y, Cheng T, et al. Printed supercapacitors: Materials, printing and applications. Chem Soc Rev, 2019, 48: 3229–3264

    Article  CAS  PubMed  Google Scholar 

  2. Wang S, Li L, Shao Y, et al. Transition-metal oxynitride: A facile strategy for improving electrochemical capacitor storage. Adv Mater, 2019, 31: 1806088

    Article  Google Scholar 

  3. Lu C, Chen X. In situ synthesized PEO/NBR composite ionogels for high-performance all-solid-state supercapacitors. Chem Commun, 2019, 55: 8470–8473

    Article  CAS  Google Scholar 

  4. Tebyetekerwa M, Marriam I, Xu Z, et al. Critical insight: Challenges and requirements of fibre electrodes for wearable electrochemical energy storage. Energy Environ Sci, 2019, 12: 2148–2160

    Article  Google Scholar 

  5. Lu C, Chen X. An interfacial polymerization strategy towards high-performance flexible supercapacitors. J Mater Chem A, 2019, 7: 20158–20161

    Article  CAS  Google Scholar 

  6. Xu Y, Shi G, Duan X. Self-assembled three-dimensional graphene macrostructures: Synthesis and applications in supercapacitors. Acc Chem Res, 2015, 48: 1666–1675

    Article  CAS  PubMed  Google Scholar 

  7. Du P, Liu H C, Yi C, et al. Polyaniline-modified oriented graphene hydrogel film as the free-standing electrode for flexible solid-state supercapacitors. ACS Appl Mater Interfaces, 2015, 7: 23932–23940

    Article  CAS  PubMed  Google Scholar 

  8. Gogotsi Y, Penner R M. Energy Storage in Nanomaterials — Capacitive, pseudocapacitive, or battery-like? ACS Nano, 2018, 12: 2081–2083

    Article  CAS  PubMed  Google Scholar 

  9. Guan B Y, Yu X Y, Wu H B, et al. Complex nanostructures from materials based on metal-organic frameworks for electrochemical energy storage and conversion. Adv Mater, 2017, 29: 1703614

    Article  Google Scholar 

  10. Choi B G, Hong J, Hong W H, et al. Facilitated ion transport in all-solid-state flexible supercapacitors. ACS Nano, 2011, 5: 7205–7213

    Article  CAS  PubMed  Google Scholar 

  11. Hao C, Yang B, Wen F, et al. Flexible all-solid-state supercapacitors based on liquid-exfoliated black-phosphorus nanoflakes. Adv Mater, 2016, 28: 3194–3201

    Article  CAS  PubMed  Google Scholar 

  12. Zhu Y, Murali S, Cai W, et al. Graphene and graphene oxide: Synthesis, properties, and applications. Adv Mater, 2010, 22: 3906–3924

    Article  CAS  PubMed  Google Scholar 

  13. Ji L, Meduri P, Agubra V, et al. Graphene-based nanocomposites for energy storage. Adv Energy Mater, 2016, 6: 1502159

    Article  Google Scholar 

  14. Chen Z, Augustyn V, Wen J, et al. High-performance supercapacitors based on intertwined CNT/V2O5 nanowire nanocomposites. Adv Mater, 2011, 23: 791–795

    Article  CAS  PubMed  Google Scholar 

  15. Li X, Shen J, Sun W, et al. A super-high energy density asymmetric supercapacitor based on 3d core-shell structured nico-layered double hydroxide@carbon nanotube and activated polyaniline-derived carbon electrodes with commercial level mass loading. J Mater Chem A, 2015, 3: 13244–13253

    Article  CAS  Google Scholar 

  16. Niu W, Yang Y. Graphitic carbon nitride for electrochemical energy conversion and storage. ACS Energy Lett, 2018, 3: 2796–2815

    Article  CAS  Google Scholar 

  17. Chen J, Mao Z, Zhang L, et al. Nitrogen-deficient graphitic carbon nitride with enhanced performance for lithium ion battery anodes. ACS Nano, 2017, 11: 12650–12657

    Article  CAS  PubMed  Google Scholar 

  18. Lu C, Chen X. Sea-island nanostructured polyvinylidene fluoride/zeolitic imidazolate framework-8 polyelectrolyte for high-performance all-solid-state supercapacitors. J Power Sources, 2020, 448: 227587

    Article  CAS  Google Scholar 

  19. Zhang Q, Levi M D, Dou Q, et al. The charge storage mechanisms of 2d cation-intercalated manganese oxide in different electrolytes. Adv Energy Mater, 2019, 9: 1802707

    Article  Google Scholar 

  20. Lu C, Chen X. Electrospun polyaniline nanofiber networks toward high-performance flexible supercapacitors. Adv Mater Technol, 2019, 4: 1900564

    Article  CAS  Google Scholar 

  21. Sridhar V, Kim H J, Jung J H, et al. Defect-engineered three-dimensional graphene-nanotube-palladium nanostructures with ultrahigh capacitance. ACS Nano, 2012, 6: 10562–10570

    Article  CAS  PubMed  Google Scholar 

  22. Lu C, Yang Y, Wang J, et al. High-performance graphdiyne-based electrochemical actuators. Nat Commun, 2018, 9: 752

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  23. Zhao Y, Wang W, Xiong D B, et al. Titanium carbide derived nanoporous carbon for supercapacitor applications. Int J Hydrogen Energy, 2012, 37: 19395–19400

    Article  CAS  Google Scholar 

  24. Zhang Z, Mu S, Zhang B, et al. A novel synthesis of carbon nanotubes directly from an indecomposable solid carbon source for electrochemical applications. J Mater Chem A, 2016, 4: 2137–2146

    Article  CAS  Google Scholar 

  25. Lu C, Chen X. Two-step synthesis of millimeter-scale flexible tubular supercapacitors. Commun Chem, 2020, 3: 23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lin T, Chen I W, Liu F, et al. Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage. Science, 2015, 350: 1508–1513

    Article  CAS  PubMed  ADS  Google Scholar 

  27. Lu C, Chen X. Porous g-C3N4 covered MOF-derived nanocarbon materials for high-performance supercapacitors. RSC Adv, 2019, 9: 39076–39081

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  28. Liu J, Zhang T, Wang Z, et al. Simple pyrolysis of urea into graphitic carbon nitride with recyclable adsorption and photocatalytic activity. J Mater Chem, 2011, 21: 14398–14401

    Article  CAS  Google Scholar 

  29. Zhang Y, Ge J, Wang L, et al. Manageable n-doped graphene for high performance oxygen reduction reaction. Sci Rep, 2013, 3: 2771

    Article  PubMed  PubMed Central  Google Scholar 

  30. Groenewolt M, Antonietti M. Synthesis of g-C3N4 nanoparticles in mesoporous silica host matrices. Adv Mater, 2005, 17: 1789–1792

    Article  CAS  Google Scholar 

  31. Xu J, Xu F, Qian M, et al. Conductive carbon nitride for excellent energy storage. Adv Mater, 2017, 29: 1701674

    Article  Google Scholar 

  32. Cao A, Xu C, Liang J, et al. X-ray diffraction characterization on the alignment degree of carbon nanotubes. Chem Phys Lett, 2001, 344: 13–17

    Article  CAS  ADS  Google Scholar 

  33. Canobre S C, Xavier F F S, Fagundes W S, et al. Performance of the chemical and electrochemical composites of ppy/cnt as electrodes in type i supercapacitors. J Nanomaterials, 2015, 2015: 1–13

    Article  Google Scholar 

  34. Xi X, Wu D, Han L, et al. Highly uniform carbon sheets with orientation-adjustable ordered mesopores. ACS Nano, 2018, 12: 5436–5444

    Article  CAS  PubMed  Google Scholar 

  35. Qiu Y, Hou M, Gao J, et al. One-step synthesis of monodispersed mesoporous carbon nanospheres for high-performance flexible quasi-solid-state micro-supercapacitors. Small, 2019, 15: 1903836

    Article  CAS  Google Scholar 

  36. Li X, Wang H, Robinson J T, et al. Simultaneous nitrogen doping and reduction of graphene oxide. J Am Chem Soc, 2009, 131: 15939–15944

    Article  CAS  PubMed  Google Scholar 

  37. Park S, Hu Y, Hwang J O, et al. Chemical structures of hydrazine-treated graphene oxide and generation of aromatic nitrogen doping. Nat Commun, 2012, 3: 638

    Article  PubMed  ADS  Google Scholar 

  38. Lu C, Wang D, Zhao J, et al. A continuous carbon nitride polyhedron assembly for high-performance flexible supercapacitors. Adv Funct Mater, 2017, 27: 1606219

    Article  Google Scholar 

  39. She X, Liu L, Ji H, et al. Template-free synthesis of 2D porous ultrathin nonmetal-doped g-C3N4 nanosheets with highly efficient photocatalytic H 2 evolution from water under visible light. Appl Catal B-Environ, 2016, 187: 144–153

    Article  CAS  Google Scholar 

  40. Zhou Y, Zhu Y, Xue D, et al. A nitrogen-doped 3d open-structured graphite nanofiber matrix for high-performance supercapacitors. J Mater Chem A, 2018, 6: 14065–14068

    Article  CAS  Google Scholar 

  41. Wang J G, Liu H, Sun H, et al. One-pot synthesis of nitrogen-doped ordered mesoporous carbon spheres for high-rate and long-cycle life supercapacitors. Carbon, 2018, 127: 85–92

    Article  CAS  Google Scholar 

  42. Cao J, Qin C, Wang Y, et al. Solid-state method synthesis of SnO2-decorated g-C3N4 nanocomposites with enhanced Gas-sensing property to ethanol. Materials, 2017, 10: 604

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  43. Deng F, Rujisamphan N, Liu C, et al. Grafting polymer coatings onto the surfaces of carbon nanotube forests and yarns via a photon irradiation process. Appl Phys Lett, 2012, 100: 213109

    Article  ADS  Google Scholar 

  44. Li Y, Li P, Wang J, et al. Water soluble graphitic carbon nitride with tunable fluorescence for boosting broad-response photocatalysis. Appl Catal B-Environ, 2018, 225: 519–529

    Article  Google Scholar 

  45. Kadam A N, Moniruzzaman M, Lee S W. Dual functional s-doped g-C3N4 pinhole porous nanosheets for selective fluorescence sensing of Ag and visible-light photocatalysis of dyes. Molecules, 2019, 24: 450

    Article  PubMed  PubMed Central  Google Scholar 

  46. Fan X, Ji X, Chen L, et al. All-temperature batteries enabled by fluorinated electrolytes with non-polar solvents. Nat Energy, 2019, 4: 882–890

    Article  CAS  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi Chen.

Additional information

Supporting Information

The supporting information is available online at tech.scichina.com and tech.scichina.com. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

This work was supported by the Earth Engineering Center, and Center for Advanced Materials for Energy and Environment at Columbia University.

Supporting information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, C., Chen, X. Carbon nanotubes/graphitic carbon nitride nanocomposites for all-solid-state supercapacitors. Sci. China Technol. Sci. 63, 1714–1720 (2020). https://doi.org/10.1007/s11431-019-1554-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-019-1554-x

Keywords

Navigation